Algorithms and Analysis

Lesson 8: Keep Trees Balanced

AVL trees, red-black trees, TreeSet, TreeMap

1. Deletion

2. Balancing Trees

e Rotations
3. AVL

4. Red-Black Trees

e TreeSet
e TreeMap

QOutline

AICE1005 Algorithms and Analysis

Recap

e Binary search trees are commonly used to store data because we
need to only look down one branch to find any elementl

e We saw how to implement many methods of the binary search
tree

find
insert
successor (in outline)

e One method we missed was removel

AICE1005

Algorithms and Analysis

Deletion

e Suppose we want to delete some elements from a treel

e It is relatively easy if the element is a leaf node (e.g. 50) 1

e It is not so hard if the node has one child (e.g. 20) 1
80

remove

mﬁmn nuttll m5

nuil]l mutill

(80)

110

229,

/

1518 0

Inull nutull nutull nuttull null

DO

il

AICE1005 Algorithms and Analysis

Code to remove Node n

if (n->left==0 && n->right==0) {
if (n == n->parent->left)

n->parent->left = 0;
2 delete(50) 20

/
0,
else —_—
n->parent->right = 0;l f ™~

50
} else if (n->right==0) {
if (n == n->parent->left)

AICE1005

Algorithms and Analysis

Removing Element with Two Children

e If an element has two children then I

replace that element by its successor I
and then remove the successor using the above procedure I

remove (80)

n->parent->left = n->left;
else /
n->parent->right = n->left; 20 delete(20) 15
n->left->parent = n->parent;l 15 15 15
} else if (n->left==0) {
if (n == n->parent->left) s 8
n->parent->left = n->right; \
elsa U0 delete(110) 0
n->parent->right = n->right; 3§y — 8= PARN null el ool nil] el o1 QS0
n->right->parent = n->parent; Q 1
1 m mull mull
delete n;l
AICE1005 Algorithms and Analysis AICE1005 Algorithms and Analysis 6
Outline Why Balance Trees
e The number of comparisons to access an element depends on the
depth of the nodel
1. Deletion

2. Balancing Trees

e Rotations
3. AVL

4. Red-Black Trees

e TreeSet
e TreeMap

e The average depth of the node depends on the shape of the treel

8

7N

4
VRN
2 6
/\ /\
1 3 5 7

10
/ N\
9 11

full tree

14

/' \

13

15

Sparse tree

e The shape of the tree depends on the order the elements are

addedi

AICE1005 Algorithms and Analysis

AICE1005

Algorithms and Analysis

Time Complexity

e In the best situation (a full tree) the number of elements in a tree

is n = ©(2Y) the depth is [so that the maximum depth is log,(n)i

e It turns out for random sequences the average depth is ©(log(n))1

e In the worst case (when the tree is effectively a linked list), the
average depth is O(n)i

e Unfortunately, the worst case happens when the elements are

Rotations

e To avoid unbalanced trees we would like to modify the shapel

e This is possible as the shape of the tree is not uniquely defined
(e.g. we could make any node the root)l

e \We can change the shape of a tree using rotationsi

e E.g. left rotation

rotateLeft()]‘3
—_—

added in order (not a rare event)i X<A
B<X
A<X<B A<X<B I
AICE1005 Algorithms and Analysis 9 AICE1005 Algorithms and Analysis 10
Types of Rotations Coding Rotations
e We can get by with 4 types of rotationsl
. void rotateleft (Nodex eH
Left rotation (as above)l .
Right rotation (symmetric to above) Nodex r = e->right;ll
‘ \ e->right = r->left;l
LE (rmleft 1= 0) I | rotateLeft() |
A rotatenght() r->left->parent = e; T
/// r->parent = e->parent;l
B b / \ if (e->parent == 0)
root = r;
else if (e->parent->left == e)
e->parent->left = r;
else
e->parent->right = r;l
r->left = e;
Left-right double rotationi I@*>Parent =
. . }
Right-left double rotationi
AICE1005 Algorithms and Analysis 11 AICE1005 Algorithms and Analysis 12

When Single Rotations Work

e Single rotations balance the tree when the unbalanced subtree is
on the outside

‘ rotateLeft() ‘
A E—

A

A<X<B

Double Rotations

e If the unbalanced subtree is on the inside we need a double
rotation

rotateLeftRight()

L / \ |
A/ /
\B . rotatel Leﬁ(I rotateRight() A \A

leftRotation(C.left);
rightRotation (C);l

\
/

AICE1005 Algorithms and Analysis 13

Outline

1. Deletion

2. Balancing Trees

e Rotations
3. AVL

4. Red-Black Trees

e TreeSet
e TreeMap

AICE1005 Algorithms and Analysis 14

Balancing Trees

e There are different strategies for using rotations for balancing
treesl
e The three most popular are

AVL-trees
Red-black trees
Splay treesl

e They differ in the criteria they use for doing rotationsl

AICE1005 Algorithms and Analysis 15

AICE1005 Algorithms and Analysis 16

AVL Trees

e AVL-trees were invented in 1962 by two Russian mathematicians
Adelson-Velski and Landisl

e In AVL trees

1. The heights of the left and right subtree differ by at most 11
2. The left and right subtrees are AVL treesl

e This guarantees that the worst case AVL tree has logarithmic
depthi

Minimum Number of Nodes

e Let m(h) be the minimum number of nodes in a tree of height Al

e This has to be made up of two subtrees: one of height h — 1;
and, in the worst case, one of height h — 21

e Thus, the least number of nodes in a tree of height A is

A
m(h) =m(h—1)+m(h—2)+1 { ”‘I A AT /1le

e with m(1) =1, m(2) =21

AICE1005 Algorithms and Analysis 17

Proof of Exponential Number of Nodes

e We have m(h) = m(h — 1) + m(h —2) + 1 with m(1) =1,
m(2) =21

e This gives us a sequence 1,2,4,7,12,---1

e Compare this with Fibonacci f(h) = f(h — 1) + f(h — 2), with
f)=f@2)=11

e This gives us a sequence 1,1,2,3,5,8,13,---1
o It looks like m(h) = f(h+2) — 11

e Proof by substitutionl

AICE1005 Algorithms and Analysis 18

Proof of Logarithmic Depth
e m(h) =m(h—1)+m(h—2)+1withm(l) =1, m(2) =2
e We can prove by inductions, m(h) > (3/2)"~ 1
em(l)=1>(3/2)°=1,m(2)=2> (3/2) =3/AV1

mz()" (3@ @) B0) @) VA
e Taking logs: log(m(h)) > (h — 1)log(3/2) or

+1=0 (log(m(h)))1

e The number of elements, n, we can store in an AVL tree is
n > m(h) thus

h < O(log(n))i

AICE1005 Algorithms and Analysis 19

Implementing AVL Trees

e In practice to implement an AVL tree we include additional information at each
node indicating the balance of the subtreesl

-1 right subtree deeper than left subtree
balanceFactor = 0 left and right subtrees equal
+1 left subtree deeper than right subtreel

BasnsaBRishtloft AX)ar
ARS8 &
RotateRight

AICE1005 Algorithms and Analysis 20

Balancing AVL Trees

e When adding an element to an AVL treel

Find the location where it is to be insertedi

Iterate up through the parents re-adjusting the
balanceFactorl

If the balance factor exceeds +1 then re-balance the tree and
stopl

else 1if the balance factor goes to zero then stopl

AICE1005 Algorithms and Analysis 21

AVL Deletions

e AVL deletions are similar to AVL insertionsl

e One difference is that after performing a rotation the tree may still
not satisfy the AVL criteria so higher levels need to be examinedi

e In the worst case O(log(n)) rotations may be necessaryl

e This may be relatively slowk—but in many applications deletions
are rarel

AICE1005 Algorithms and Analysis 2

AVL Tree Performance

e Insertion, deletion and search in AVL trees are, at worst,
O (log(n))

e The height of an average AVL tree is 1.441og,(n)l
e The height of an average binary search tree is 2.11og,(n)l

e Despite being more compact insertion is slightly slower in AVL
trees than binary search trees without balancing (for random
input sequences)l

e Search is, of course, quickerl

AICE1005 Algorithms and Analysis 23

AICE1005 Algorithms and Analysis %

QOutline

1. Deletion

2. Balancing Trees

e Rotations
3. AVL

4. Red-Black Trees

Red-Black Trees

e Red-black trees are another strategy for balancing treesl
e Nodes are either red or blackl
e Two rules are imposedi

Red Rule: the children of a red node must be blackl
Black Rule: the number of black elements must be the same in

all paths from the root to elements with no children or with one
childi

32
T
G3)

e TreeSet /TN VRN
e TreeMap 15 29 62 77
7\ / \
© ©9,
AICE1005 Algorithms and Analysis 25 AICE1005 Algorithms and Analysis 26

Restructuring

e When inserting a new element we first find its positioni
e If it is the root we colour it black otherwise we colour it redi

e If its parent is red we must either relabel or restructure the treel

14

o

~~
4 12 15 18

®® @

Performance of Red-Black Trees

e Red-black trees are slightly more complicated to code than AVL
treesl

e Red-black trees tend to be slightly less compact than AVL treesl
e However, insertion and deletion run slightly quickeri

e Both Java Collection classes and C++ STL use red-black treesl

AICE1005 Algorithms and Analysis 27

Set

e The standard template library (STL) has a class std: :set<T>1

e It also has a std: :underordered_set<T> class (which uses
a hash table covered later)i

e As well as std: :multiset<T> that implements a multiset (i.e.
a set, but with repetitions)l

e Using sets you can also implement mapsi

AICE1005 Algorithms and Analysis 28

Maps

e One major abstract data type (ADT) we have not encountered is
the map classl

e The map class std:map<Key, V> contain key-value pairs
pair<Key, V>I

The first element of type Key is the keyl
The second element of type V is the valuel

e Maps work as content addressable arraysl
map<string, int> students;
student ["John,_Smith"] = 89;
student ["Terry_Jones"] = 98;
cout << students["John Smith"];

AICE1005 Algorithms and Analysis 29

Implementing a Map

e Maps can be implemented using a set by making each node hold
a pair<K, V> objectsl
class pair<K, V>
[
public:
K first;
V second;

i

e We can count words using the key for words and value to count

/ ' ~
(be, 2) (whether, 1)

AICE1005 Algorithms and Analysis 30

Lessons

e Binary search trees are very efficient (order log(n) insertion,
deletion and search) provided they are balancedi

e Balanced trees are achieved by performing rotationsl

e There are different strategies for deciding when to rotate including

AVL trees
Red-black treesl

@y T y) (troubles, 1)
S e . . .
(e, 1) (rome, 1) , ot) _ {thet, 1) e Binary trees are used for implementing sets and mapsi
@D (i) (i, 1) o8 2) (question, 1) (the, 3)
S0 (qpestion, 1) |
(in, 1) (Robler, 1) (outrageots, 1) {sufer, 1) (¢, 1)
(fortune, 1) (mind, 1) (slings, 1) (take, 1)
(sea, 1) 1

AICE1005 Algorithms and Analysis 31 AICE1005 Algorithms and Analysis 32

