
Differentiate
Almost
Everywhere

Differentiable Relaxations and Reparameterisations

Jonathon Hare

Vision, Learning and Control
University of Southampton

Jonathon Hare Relaxation 2 / 24

What are differentiable relaxations and
reparameterisations?

We’ve seen that we can build arbitrary computational graphs from a
variety of building blocks

But, those blocks need to be differentiable to work in our
optimisation framework

More specifically they need to be continuous and differentiable almost
everywhere.

That limits what we can do... Can we work around that?

Relaxations — make continuous (and potentially differentiable
everywhere) approximations.
Reparameterisations — rewrite functions to factor out stochastic
variables from the parameters.

Jonathon Hare Relaxation 3 / 24

Aside: continuity and differentiable almost everywhere

Consider the ReLU function f (x) = max(0, x)
ReLU is continuous

it does not have any abrupt changes in value
small changes in x result in small changes to f (x) everywhere in the
domain of x

ReLU is differentiable almost everywhere

No gradient at x = 0; only left and right gradients at that point
There are subgradients at x = 0; implementations usually just
arbitrarily pick f ′(0) = 0

Functions that are differentiable almost everywhere or have
subgradients tend to be compatible with gradient descent methods

We expect that the loss landscape is different for each batch & that
we’ll never actually reach a minima, and we only need to mostly take
steps in the right direction.

Jonathon Hare Relaxation 4 / 24

Relaxing ReLU

Softplus (softplus(x) = ln(1 + ex)) is a
relaxation of ReLU that is differentiable
everywhere.

Its derivative is the Sigmoid function

Not widely used; counter-intuitively,
even though it neither saturates
completely and is differentiable
everywhere, empirically it has been
shown that ReLU works better.

−5 0 5

0

5

ReLU
Softplus

Jonathon Hare Relaxation 5 / 24

Interpretations of softmax

Up until now we’ve really considered softmax as a generalisation of
sigmoid (which represents a probability distribution over a binary
variable) to many output categories.

softmax transforms a vector of logits into a probability distribution over
categories.

As you might guess from the name, softmax is a relaxation...

but not of the max function like the name would suggest!
softmax can be viewed as a continuous and differentiable relaxation of
the argmax function with one-hot output encoding.
The argmax function is not continuous or differentiable; softmax
provides an approximation:

x = [1.1 4.0 -0.1 2.3]

argmax(x) = [0 1 0 0]

softmax(x) = [0.044 0.797 0.013 0.146]

Jonathon Hare Relaxation 6 / 24

The Softmax function with temperature

Consider what happens if you were to divide the input logits to a softmax
by a scalar temperature parameter T .

softmax(x/T)i =
exi/T∑K
j=1 e

xj/T
∀i = 1, 2, . . . ,K

0 1 2 3

0

0.2

0.4

0.6

0.8

1 T = 20.0
T = 5.0
T = 1.0
T = 0.5

Jonathon Hare Relaxation 7 / 24

argmax — softmax with temperature

x = [1.1 4.0 -0.1 2.3]

softmax(x/1.0) = [0.044 0.797 0.013 0.146]

softmax(x/0.8) = [0.023 0.868 0.005 0.104]

softmax(x/0.6) = [0.008 0.937 0.001 0.055]

softmax(x/0.4) = [6.997e-04 9.852e-01 3.484e-05 1.405e-02]

softmax(x/0.2) = [5.042e-07 9.998e-01 1.250e-09 2.034e-04]

Jonathon Hare Relaxation 8 / 24

argmax — scalar approximation

What if you want to get a scalar approximation to the index of the
argmax rather than a probability distribution approximating the
one-hot form?

Caveat: we are not actually going get a guaranteed integer
representation as that would be non-differentiable; we’ll have to live
with a float that is an approximation1.

First, consider how to convert a one-hot vector to index
representation in a differentiable manner: [0, 0, 1, 0] → 2

Just dot product with a vector of indices: [0, 1, 2, 3]

The same process can be applied to the softmax distribution

As temperature T → 0, softmax(x/T) · [0, 1, . . . ,N] → argmax(x) for
x ∈ RN .

1for now — we’ll address this in a few slides time!
Jonathon Hare Relaxation 9 / 24

argmax — scalar approximation

x = [1.1 4.0 −0.1 2.3]⊤

i = [0.0 1.0 2.0 3.0]⊤

softmax(x/1.0)⊤i = 1.2606

softmax(x/0.8)⊤i = 1.1894

softmax(x/0.6)⊤i = 1.1037

softmax(x/0.4)⊤i = 1.0274

softmax(x/0.2)⊤i = 1.0004

Jonathon Hare Relaxation 10 / 24

max

A similar trick applies to finding the maximum value of a vector:

Use softmax(x) as an approximate one-hot argmax, and dot product
with the vector x .
As temperature T → 0, softmax(x/T)⊤x → max(x).

x = [1.1 4.0 −0.1 2.3]⊤

softmax(x/1.0)⊤x = 3.571

softmax(x/0.8)⊤x = 3.736

softmax(x/0.6)⊤x = 3.881

softmax(x/0.4)⊤x = 3.974

softmax(x/0.2)⊤x = 3.999

Jonathon Hare Relaxation 11 / 24

L1 norm

L1 norm is the sum of absolute values
of a vector

We’ve seen that an L1 norm regulariser
can induce sparsity in a model

abs is continuous and differentiable
almost everywhere, but...

unlike ReLU, the gradients left and
right of the discontinuity point in equal
and opposite directions

This can cause oscillations that
prevent or hamper learning

−5 0 5

0

5
abs(x)

abs′(x)

Jonathon Hare Relaxation 12 / 24

Relaxing the L1 norm

Huber loss (aka Smooth L1 loss) relaxes
L1 by mixing it with L2 near the origin:

zi =

{
0.5(xi − yi)

2, if |xi − yi | < 1

|xi − yi | − 0.5, otherwise

In both cases gradients reduce in
magnitude and switch direction
smoothly which can lead to much less
oscillation.

−5 0 5

0

5
huber(x)

huber′(x)

Jonathon Hare Relaxation 13 / 24

Backpropagation through random operations

Up until now all the models we’ve considered have performed
deterministic transformations of input variables x .
What if we want to build a model that performs a stochastic
transformation of x?
A simple way to do this is to augment the input x with a random
vector z sampled from some distribution

The network would learn a function f (x , z) that is internally
deterministic, but appears stochastic to an observer that does not have
access to z .
provided that f is continuous and differentiable (almost everywhere) we
can perform gradient based optimisation as usual.

Jonathon Hare Relaxation 14 / 24

Differentiable Sampling

Consider
y ∼ N (µ, σ2)

How can we take derivatives of y with respect to µ and σ2?

Jonathon Hare Relaxation 15 / 24

Differentiable Sampling

If we rewrite
y = µ+ σz where z ∼ N (0, 1)

Then it is clear that y is a function of a deterministic operation with
variables µ and σ with an (extra) input z .

Crucially the extra input is an r.v. whose distribution is not a function
of any variables whose derivatives we wish to calculate.

The derivatives dy/dµ and dy/dσ tell us how an infinitesimal change
in µ or σ would change y if we could repeat the sampling operation
with the same value of z

Jonathon Hare Relaxation 16 / 24

The reparameterisation trick

The ‘trick’ of factoring out the source of randomness into an extra
input z is often called the reparameterisation trick.

It doesn’t just apply to the Gaussian distribution!

More generally we can express any probability distribution p(y;θ) or
p(y|x ;θ) as p(y;ω) where ω contains the parameters θ and if
applicable inputs x .
A sample y ∼ p(y;ω) can be rewritten as y = f (z ,ω) where z is a
source of randomness.
We can thus compute derivatives ∂y/∂ω and use gradient based
optimisation as long as

f is continuous and differentiable almost everywhere
ω is not a function of z
and z is not a function of ω

Jonathon Hare Relaxation 17 / 24

Backpropagation through discrete stochastic operations

Consider a stochastic model y = f (z ,ω) where the outputs are
discrete.

This implies f must be a step function.
Derivatives of a step function at the step are undefined.
Derivatives are zero almost everywhere.
If we have a loss L(y) the gradients don’t give us any information on
how to update the parameters θ to minimise the loss

Potential solutions:

Policy Gradient Methods (e.g. the REINFORCE algorithm)
A relaxation and another ‘trick’: Gumbel Softmax and the
Straight-through operator

Jonathon Hare Relaxation 18 / 24

REINFORCE: REward Increment = nonnegative Factor ×
Offset Reinforcement × Characteristic Eligibility

L(f (z ,ω)) has useless derivatives

But the expected loss Ez∼p(z)L(f (z ,ω))is often smooth and
continuous.

This is not tractable with high dimensional y = f (z ,ω).
But, it can be estimated without bias using an Monte Carlo average.

REINFORCE is a family of algorithms that utilise this idea.

Jonathon Hare Relaxation 19 / 24

REINFORCE: REward Increment = nonnegative Factor ×
Offset Reinforcement × Characteristic Eligibility

The simplest form of REINFORCE is easy to derive by differentiating the
expected loss:

Ez [L(y)] =
∑

y

L(y)p(y) (1)

∂E[L(y)]
∂ω

=
∑

y

L(y)∂p(y)
∂ω

(2)

=
∑

y

L(y)p(y)∂ log p(y)
∂ω

(3)

≈ 1

m

m∑
y (i)∼p(y),i=1

L(y (i))
∂ log p(y (i))

∂ω
(4)

This gives us an unbiased MC estimator of the gradient.
Unfortunately this is a very high variance estimator, so it would
require many samples of y to be drawn to obtain a good estimate

or equivalently, if only one sample were drawn, SGD would converge
very slowly and require a small learning rate.

Jonathon Hare Relaxation 20 / 24

Sampling from a categorical distribution: Gumbel Softmax

The generation of a discrete token, t, from a vocabulary of K tokens is
achieved by sampling a categorical distribution

t ∼ Cat(p1, . . . , pK) ;
∑
i

pi = 1.

Generating the probabilities p1, . . . , pK directly from a neural network has
potential numerical problems; it’s much easier to generate logits,
x1, . . . , xK .

The gumbel-softmax reparameterisation allows us to sample directly using
the logits:

t = argmax
i∈{1,··· ,K}

xi + zi

where z1, . . . zK are i.i.d Gumbel(0,1) variates which can be computed
from Uniform variates through − log(− log(U(0, 1))).

Jonathon Hare Relaxation 21 / 24

Differentiable Sampling: Straight-Through Gumbel
Softmax

Ok, but how does that help? argmax isn’t differentiable!

...but we’ve already seen that we can relax argmax using

softargmax(y) =
∑
i

eyi/T∑
j e

yj/T
i

where T is the temperature parameter.

Jonathon Hare Relaxation 22 / 24

Differentiable Sampling: Straight-Through Gumbel
Softmax

But... this clearly gives us a result that will be non-integer; we cannot
round or clip because it would be non-differentiable.

The Straight-Through operator allows us to take the result of a true
argmax that has the gradient of the softargmax:

STargmax(y) = softargmax(y)+stopgradient(argmax(y)− softargmax(y))

where stopgradient is defined such that stopgradient(a) = a and
∇ stopgradient(a) = 0.

Straight-Through Gumbel Softmax

Combine the gumbel softmax trick with the STargmax to give you discrete
samples, with a usable gradienta.

aThe ST operator is biased but low variance; in practice it works very well and is better
than the high-variance unbiased estimates you could get through REINFORCE.

Jonathon Hare Relaxation 23 / 24

Summary

Differentiable programming works with functions that are continuous
and differentiable almost everywhere.

Some non-continuous functions can be relaxed to make them more
amenable to gradient based optimisation by making continuous
approximations.

Some continuous functions with discontinuous gradients can be
relaxed to make optimisation more stable.

Reparameterisations can allow us to differentiate through random
operations such as sampling

We can even make networks output/utilise discrete variables by
combining relaxations and reparameterisations.

Jonathon Hare Relaxation 24 / 24

