Differentiate Almost Everywhere

Differentiable Relaxations and Reparameterisations

Jonathon Hare

Vision, Learning and Control University of Southampton

- We've seen that we can build arbitrary computational graphs from a variety of building blocks
- But, those blocks need to be differentiable to work in our optimisation framework
 - More specifically they need to be continuous and *differentiable almost everywhere*.
- That limits what we can do... Can we work around that?
 - Relaxations make continuous (and potentially differentiable everywhere) approximations.
 - Reparameterisations rewrite functions to factor out stochastic variables from the parameters.

Relaxation

Aside: continuity and differentiable almost everywhere

- Consider the ReLU function f(x) = max(0, x)
 - ReLU is continuous
 - it does not have any abrupt changes in value
 - small changes in x result in small changes to f(x) everywhere in the domain of x
 - ReLU is differentiable almost everywhere
 - No gradient at x = 0; only *left* and *right* gradients at that point
 - There are subgradients at x = 0; implementations usually just arbitrarily pick f'(0) = 0
- Functions that are differentiable almost everywhere or have subgradients tend to be compatible with gradient descent methods
 - We expect that the loss landscape is different for each batch & that we'll never actually reach a minima, and we only need to *mostly* take steps in the right direction.

- Softplus (softplus(x) = ln(1 + e^x)) is a relaxation of ReLU that is *differentiable everywhere*.
- Its derivative is the Sigmoid function
- Not widely used; counter-intuitively, even though it neither saturates completely and is differentiable everywhere, empirically it has been shown that ReLU works better.

Relaxation

Interpretations of softmax

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.
- As you might guess from the name, softmax is a relaxation...
 - but not of the max function like the name would suggest!
 - softmax can be viewed as a continuous and differentiable relaxation of the arg max function with one-hot output encoding.
 - The arg max function is not continuous or differentiable; softmax provides an approximation:

$\mathbf{x} =$	[1.1	4.0	-0.1	2.3]
$\arg \max(\mathbf{x}) =$	[0	1	0	0]
$softmax(\pmb{x}) =$	[0.044	0.797	0.013	0.146]

The Softmax function with temperature

Consider what happens if you were to divide the input logits to a softmax by a scalar temperature parameter T.

arg max — softmax with temperature

$\mathbf{x} =$	[1.1	4.0	-0.1	2.3]
$softmax(\pmb{x}/1.0) =$	[0.044	0.797	0.013	0.146]
$softmax(\pmb{x}/0.8) =$	[0.023	0.868	0.005	0.104]
$\operatorname{softmax}({m x}/0.6) =$	[0.008	0.937	0.001	0.055]
$\operatorname{softmax}({m x}/0.4) =$	[6.997e-04	9.852e-01	3.484e-05	1.405e-02]
$\operatorname{softmax}({m x}/0.2) =$	[5.042e-07	9.998e-01	1.250e-09	2.034e-04]

- What if you want to get a scalar approximation to the index of the arg max rather than a probability distribution approximating the one-hot form?
 - Caveat: we are not actually going get a guaranteed integer representation as that would be non-differentiable; we'll have to live with a float that is an approximation¹.
- First, consider how to convert a one-hot vector to index representation in a differentiable manner: $[0, 0, 1, 0] \rightarrow 2$
 - Just dot product with a vector of indices: [0,1,2,3]
- The same process can be applied to the softmax distribution
 - As temperature T → 0, softmax(x/T) · [0, 1, ..., N] → arg max(x) for x ∈ ℝ^N.

¹for now — we'll address this in a few slides time! Jonathon Hare Relaxation

9/24

arg max — scalar approximation

$$\mathbf{x} = [1.1 \ 4.0 \ -0.1 \ 2.3]^{\top}$$
$$\mathbf{i} = [0.0 \ 1.0 \ 2.0 \ 3.0]^{\top}$$
softmax $(\mathbf{x}/1.0)^{\top}\mathbf{i} = 1.2606$ softmax $(\mathbf{x}/0.8)^{\top}\mathbf{i} = 1.1894$ softmax $(\mathbf{x}/0.6)^{\top}\mathbf{i} = 1.1037$ softmax $(\mathbf{x}/0.4)^{\top}\mathbf{i} = 1.0274$ softmax $(\mathbf{x}/0.2)^{\top}\mathbf{i} = 1.0004$

max

- A similar trick applies to finding the maximum value of a vector:
 - Use softmax(x) as an approximate one-hot arg max, and dot product with the vector x.
 - As temperature $T \to 0$, softmax $(\mathbf{x}/T)^{\top}\mathbf{x} \to \max(\mathbf{x})$.

 $\mathbf{x} = [1.1 \ 4.0 \ -0.1 \ 2.3]^{\top}$ softmax $(\mathbf{x}/1.0)^{\top}\mathbf{x} = 3.571$ softmax $(\mathbf{x}/0.8)^{\top}\mathbf{x} = 3.736$ softmax $(\mathbf{x}/0.6)^{\top}\mathbf{x} = 3.881$ softmax $(\mathbf{x}/0.4)^{\top}\mathbf{x} = 3.974$ softmax $(\mathbf{x}/0.2)^{\top}\mathbf{x} = 3.999$

Jonathon Hare

Relaxation

L1 norm

- L1 norm is the sum of absolute values of a vector
- We've seen that an L1 norm regulariser can induce sparsity in a model
- abs is continuous and differentiable almost everywhere, but...
- unlike ReLU, the gradients left and right of the discontinuity point in equal and opposite directions
 - This can cause oscillations that prevent or hamper learning

• Huber loss (aka Smooth L1 loss) relaxes L1 by mixing it with L2 near the origin:

$$z_i = \begin{cases} 0.5(x_i - y_i)^2, & ext{if } |x_i - y_i| < 1 \\ |x_i - y_i| - 0.5, & ext{otherwise} \end{cases}$$

 In both cases gradients reduce in magnitude and switch direction smoothly which can lead to much less oscillation.

Backpropagation through random operations

- Up until now all the models we've considered have performed deterministic transformations of input variables *x*.
- What if we want to build a model that performs a stochastic transformation of *x*?
- A simple way to do this is to augment the input **x** with a random vector **z** sampled from some distribution
 - The network would learn a function f(x, z) that is internally deterministic, but appears stochastic to an observer that does not have access to z.
 - provided that *f* is continuous and differentiable (almost everywhere) we can perform gradient based optimisation as usual.

Consider

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

How can we take derivatives of y with respect to μ and σ^2 ?

Jonathon Hare

Relaxation

Differentiable Sampling

If we rewrite

 $y = \mu + \sigma z$ where $z \sim \mathcal{N}(0, 1)$

Then it is clear that y is a function of a deterministic operation with variables μ and σ with an (extra) input z.

- Crucially the extra input is an r.v. whose distribution is not a function of any variables whose derivatives we wish to calculate.
- The derivatives dy/dμ and dy/dσ tell us how an infinitesimal change in μ or σ would change y if we could repeat the sampling operation with the same value of z

- The 'trick' of factoring out the source of randomness into an extra input *z* is often called the **reparameterisation trick**.
- It doesn't just apply to the Gaussian distribution!
 - More generally we can express any probability distribution p(y; θ) or p(y|x; θ) as p(y; ω) where ω contains the parameters θ and if applicable inputs x.
 - A sample y ~ p(y; ω) can be rewritten as y = f(z, ω) where z is a source of randomness.
 - We can thus compute derivatives $\partial y/\partial \omega$ and use gradient based optimisation as long as
 - f is continuous and differentiable almost everywhere
 - ω is not a function of z
 - and z is not a function of ω

Relaxation

Backpropagation through discrete stochastic operations

- Consider a stochastic model y = f(z, ω) where the outputs are discrete.
 - This implies *f* must be a step function.
 - Derivatives of a step function at the step are undefined.
 - Derivatives are zero almost everywhere.
 - If we have a loss L(y) the gradients don't give us any information on how to update the parameters θ to minimise the loss
- Potential solutions:
 - Policy Gradient Methods (e.g. the REINFORCE algorithm)
 - A relaxation and another 'trick': Gumbel Softmax and the Straight-through operator

- $\mathcal{L}(f(\boldsymbol{z}, \boldsymbol{\omega}))$ has useless derivatives
- But the expected loss E_{z~p(z)} L(f(z, ω)) is often smooth and continuous.
 - This is not tractable with high dimensional $\mathbf{y} = f(\mathbf{z}, \boldsymbol{\omega})$.
 - But, it can be estimated without bias using an Monte Carlo average.
- REINFORCE is a family of algorithms that utilise this idea.

Relaxation

REINFORCE: REward Increment = nonnegative Factor \times Offset Reinforcement \times Characteristic Eligibility

The simplest form of REINFORCE is easy to derive by differentiating the expected loss:

$$\mathbb{E}_{z}[\mathcal{L}(y)] = \sum_{y} \mathcal{L}(y) \rho(y)$$
(1)

$$\frac{\partial \mathbb{E}[\mathcal{L}(\mathbf{y})]}{\partial \omega} = \sum_{\mathbf{y}} \mathcal{L}(\mathbf{y}) \frac{\partial p(\mathbf{y})}{\partial \omega}$$
(2)

$$=\sum_{\mathbf{y}} \mathcal{L}(\mathbf{y}) p(\mathbf{y}) \frac{\partial \log p(\mathbf{y})}{\partial \omega}$$
(3)

$$\approx \frac{1}{m} \sum_{\mathbf{y}^{(i)} \sim p(\mathbf{y}), i=1}^{m} \mathcal{L}(\mathbf{y}^{(i)}) \frac{\partial \log p(\mathbf{y}^{(i)})}{\partial \boldsymbol{\omega}}$$
(4)

- This gives us an unbiased MC estimator of the gradient.
- Unfortunately this is a very high variance estimator, so it would require many samples of y to be drawn to obtain a good estimate
 - or equivalently, if only one sample were drawn, SGD would converge very slowly and **require** a small learning rate.

Sampling from a categorical distribution: Gumbel Softmax

The generation of a discrete token, t, from a vocabulary of K tokens is achieved by sampling a categorical distribution

$$t \sim \mathsf{Cat}(p_1, \dots, p_K)$$
 ; $\sum_i p_i = 1.$

Generating the probabilities p_1, \ldots, p_K directly from a neural network has potential numerical problems; it's much easier to generate logits, x_1, \ldots, x_K .

The gumbel-softmax reparameterisation allows us to sample directly using the logits:

$$t = \underset{i \in \{1, \cdots, K\}}{\operatorname{argmax}} x_i + z_i$$

where $z_1, \ldots z_K$ are i.i.d Gumbel(0,1) variates which can be computed from Uniform variates through $-\log(-\log(\mathcal{U}(0,1)))$.

Jonathon Hare

Relaxation

21/24

Differentiable Sampling: Straight-Through Gumbel Softmax

Ok, but how does that help? argmax isn't differentiable!

...but we've already seen that we can relax arg max using

$$\operatorname{softargmax}(\boldsymbol{y}) = \sum_{i} \frac{e^{y_i/T}}{\sum_{j} e^{y_j/T}} i$$

where T is the temperature parameter.

Differentiable Sampling: Straight-Through Gumbel Softmax

But... this clearly gives us a result that will be non-integer; we cannot round or clip because it would be non-differentiable.

The Straight-Through operator allows us to take the result of a true argmax that has the gradient of the softargmax:

STargmax(y) = softargmax(y) + stopgradient(argmax(y) - softargmax(y))

where stopgradient is defined such that stopgradient(\boldsymbol{a}) = \boldsymbol{a} and ∇ stopgradient(\boldsymbol{a}) = 0.

Straight-Through Gumbel Softmax

Combine the gumbel softmax trick with the STargmax to give you discrete samples, with a usable gradient^a.

^aThe ST operator is biased but low variance; in practice it works very well and is better than the high-variance unbiased estimates you could get through REINFORCE.

```
Jonathon Hare
```

Relaxation

Summary

- Differentiable programming works with functions that are continuous and differentiable almost everywhere.
- Some non-continuous functions can be relaxed to make them more amenable to gradient based optimisation by making continuous approximations.
- Some continuous functions with discontinuous gradients can be relaxed to make optimisation more stable.
- Reparameterisations can allow us to differentiate through random operations such as sampling
- We can even make networks output/utilise discrete variables by combining relaxations and reparameterisations.