
Train,
Validate,
Test

Recap of Basic Neural Networks
(and some Deep Network Fundamentals)

Jonathon Hare and Antonia Marcu

Vision, Learning and Control
University of Southampton

Jonathon Hare and Antonia Marcu COMP6258 2 / 23



Classical Types of Learning

Supervised Learning - learn to predict an output when given an input
vector

Unsupervised Learning - discover a good internal representation of the
input

Reinforcement Learning - learn to select an action to maximize the
expectation of future rewards (payoff)

Semi-supervised Learning - learn with few labelled examples and
many unlabelled ones

Jonathon Hare and Antonia Marcu COMP6258 3 / 23

Other Types of Learning

Self-supervised Learning - learn with targets induced by a prior on the
unlabelled training data

Active Learning - learn by seeking guidance from human or oracle
when needed (iterative semi-supervised learning)

Continual Learning - learn new tasks/classes sequentially (iterative
supervised/unsupervised learning)

Online learning - learning one example at a time sequentially
(iterative supervised learning)

Jonathon Hare and Antonia Marcu COMP6258 4 / 23



Two Types of Supervised Learning

Regression: The machine is asked predict k numerical values given
some input. The machine is a function f : Rn → Rk .

Classification: The machine is asked to specify which of k categories
some input belongs to.

Multiclass classification - target is one of the k classes
Multilabel classification - target is some number of the k classes
In both cases, the machine is a function f : Rn → {1, ..., k}.

It is most common for both types of algorithms to actually learn
f̂ : Rn → Rk .

Jonathon Hare and Antonia Marcu COMP6258 5 / 23

How Supervised Learning Typically Works

Start by choosing a model-class: ŷ = f (x ;W ) where the model-class
f is a way of using some numerical parameters, W , to map each
input vector x to a predicted output ŷ .

Learning means adjusting the parameters to reduce the discrepancy
between the true target output y on each training case and the
output ŷ , predicted by the model.

Jonathon Hare and Antonia Marcu COMP6258 6 / 23



Let’s look at a Multilayer Perceptron (without biases)...

x1

x2

x3

x4

h1

h2

h3

h4

h5

o1 ŷ1

o2 ŷ2

w
(1)
ji

w
(2)
kj

Hidden
layer

Input
layer

Output
layer

Without loss of generality, we can write the above as:

ŷ = g(f (x ;W (1));W (2)) = g(W (2)f (W (1)x))

where f and g are activation functions.
Jonathon Hare and Antonia Marcu COMP6258 7 / 23

Common Activation Functions

Identity

Sigmoid (aka Logistic)

Hyperbolic Tangent (tanh)

Rectified Linear Unit (ReLU) (aka Threshold Linear)

Jonathon Hare and Antonia Marcu COMP6258 8 / 23



Final layer activations

ŷ = g(W (2)f (W (1)x))

What form should the final layer function g take?

It depends on the task (and on the chosen loss function)...

regression → typically linear
binary classification → typically Sigmoid
multilabel classification → typically Sigmoid
multiclass classification → typically Softmax

Jonathon Hare and Antonia Marcu COMP6258 9 / 23

Softmax

softmax(z)i = ezi∑K
j=1 e

zj
∀i = 1, 2, . . . ,K

Note that
softmax makes reference to all the elements in the output.

output: positive numbers that sum to 1.

Note:

∂ softmax(z)i
∂zi

= softmax(zi )(1− softmax(zi ))

∂ softmax(z)i
∂zj

= softmax(zi )(1(i = j)− softmax(zj))

= softmax(zi )(δij − softmax(zj))

Jonathon Hare and Antonia Marcu COMP6258 10 / 23



Ok, so let’s talk loss functions

The choice of loss function depends on:
1 the task (e.g. classification/regression/something else)
2 the activation function of the last layer

For numerical reasons
the activation is often computed directly within the loss rather than
being part of the model

Some classification losses require raw outputs (e.g. a linear layer) of
the network as their input

These are often called unnormalised log probabilities or logits
An example would be hinge-loss used to create a Support Vector
Machine for binary classification

There are many different loss functions we might encounter (MSE,
Cross-Entropy, KL-Divergence, huber, L1 (MAE), CTC, Triplet, ...)
for different tasks.

Jonathon Hare and Antonia Marcu COMP6258 11 / 23

The Loss Function (measure of discrepancy)

Recall from Foundations of Machine Learning:

Mean Squared Error (MSE) loss for a single data point
is given by
ℓMSE (ŷ , y) =

∑
i (ŷi − yi )

2 = (ŷ − y)⊤(ŷ − y)
We often multiply this by a constant factor of 1

2 — can anyone
guess/remember why?

ℓMSE (ŷ , y) is the predominant choice for regression problems with
linear activation in the last layer

For a classification problem with Softmax or Sigmoidal
activations MSE can cause slow learning

Gradients of ℓMSE are proportional to the difference in target and
predicted value, multiplied by the gradient of the activation function
The Cross-Entropy loss function is generally a better choice in
this case

Jonathon Hare and Antonia Marcu COMP6258 12 / 23



Binary Cross-Entropy

For the binary classification case:

ℓBCE (ŷ , y) = −y log(ŷ)− (1− y) log(1− ŷ)

The cross-entropy loss function is non-negative, ℓBCE > 0

ℓBCE ≈ 0 when the prediction and targets are equal (i.e. y = 0 and
ŷ = 0 or when y = 1 and ŷ = 1)

With Sigmoidal final layer, ∂ℓBCE

∂W (2)
i

is proportional to just the error in

the output (ŷ − y) and therefore, the larger the error, the faster the
network will learn!

Note that the BCE is the negative log likelihood of the Bernoulli
Distribution

Jonathon Hare and Antonia Marcu COMP6258 13 / 23

Binary Cross-Entropy — Intuition

The cross-entropy can be thought of as a measure of surprise.

Given some input xi , we can think of ŷi as the estimated probability
that xi belongs to class 1, and 1− ŷi is the estimated probability that
it belongs to class 0.

Note the extreme case of infinite cross-entropy, if your model believes
that a class has 0 probability of occurrence, and yet the class appears
in the data, the ‘surprise’ of your model will be infinitely great.

Jonathon Hare and Antonia Marcu COMP6258 14 / 23



Binary Cross-Entropy for multiple labels

In the case of multi-label classification with a network with multiple
sigmoidal outputs you just sum the BCE over the outputs:

ℓBCE = −
∑K

k=1[yk log(ŷk) + (1− yk) log(1− ŷk)]

where K is the number of classes of the classification problem, ŷ ∈ RK .

Jonathon Hare and Antonia Marcu COMP6258 15 / 23

Numerical Stability: The Log-Sum-Exp trick

ℓBCE (ŷ , y) = −y log(ŷ)− (1− y) log(1− ŷ)

Consider what might happen early in training when the model might
confidently predict a positive example as negative

ŷ = σ(z) ≈ 0 =⇒ z << 0
if ŷ is small enough, it will become 0 due to limited precision of
floating-point representations
but then log(ŷ) = − inf, and everything will break!

To tackle this problem implementations usually combine the sigmoid
computation and BCE into a single loss function that you would apply
to a network with linear outputs (e.g. BCEWithLogitsLoss).

Internally, a trick called ‘log-sum-exp’ is used to shift the centre of an
exponential sum so that only numerical underflow can potentially
happen, rather than overflow
.

Ultimately this means you’ll always get a numerically reasonable result
(and will avoid NaNs and Infs originating from this point).

Jonathon Hare and Antonia Marcu COMP6258 16 / 23



Multiclass classification with Softmax Outputs

Softmax can be thought of making the K outputs of the network
mimic a probability distribution.

The target label y could also be represented as a distribution with a
single 1 and zeros everywhere else.

e.g. they are “one-hot encoded”.

In such a case, the obvious loss function is the negative log likelihood
of the Categorical distribution (aka Multinoulli, Generalised Bernoulli,
Multinomial with one sample)

Note that in practice as yk is zero for all but one class you don’t
actually do this summation, and if y is an integer class index you can
write ℓNLL = − log ŷy .

Log-Sum-Exp can be used for better numerical stability. PyTorch
combines LogSoftmax with NLL in one loss and calls this “Categorical
Cross-Entropy” (so you would use this with a linear output layer)

Jonathon Hare and Antonia Marcu COMP6258 17 / 23

Reminder: Gradient Descent

Define total loss as L =
∑

(x ,y)∈D ℓ(g(x ,θ), y) for some loss function
ℓ, dataset D and model g with learnable parameters θ.

Define how many passes over the data to make (each one known as
an Epoch)

Define a learning rate λ

Gradient Descent updates the parameters θ by moving them in the
direction of the negative gradient with respect to the total loss L by the
learning rate λ multiplied by the gradient:

for each Epoch:

θ ← θ − λ∇θL

Jonathon Hare and Antonia Marcu COMP6258 18 / 23



Reminder: Stochastic Gradient Descent

Define loss function ℓ, dataset D and model g with learnable
parameters θ.

Define how many passes over the data to make (each one known as
an Epoch)

Define a learning rate λ

Stochastic Gradient Descent updates the parameters θ by moving them in
the direction of the negative gradient with respect to the loss of a single
item ℓ by the learning rate λ multiplied by the gradient:

for each Epoch:

for each (x , y) ∈ D:

θ ← θ − λ∇θℓ

Jonathon Hare and Antonia Marcu COMP6258 19 / 23

A Quick Introduction to Tensors

Broadly speaking a tensor is defined as a linear mapping between sets of
algebraic objects1.
A tensor T can be thought of as a generalization of scalars, vectors and
matrices to a single algebraic object.
We can just think of this as a multidimensional array2.

A 0D tensor is a scalar

A 1D tensor is a vector

A 2D tensor is a matrix

A 3D tensor can be thought of as a vector of identically sized matrices

A 4D tensor can be thought of as a matrix of identically sized
matrices or a sequence of 3D tensors

. . .

1This statement is always entirely true
2This statement will upset mathematicians and physicists because its not always true for
them (but it is for us!).
Jonathon Hare and Antonia Marcu COMP6258 20 / 23



Operations on Tensors in PyTorch

PyTorch lets you do all the standard matrix operations on 2D tensors

including important things you might not yet have seen like the
hadamard product of two N ×M matrices: A⊙ B)

You can do element-wise add/divide/subtract/multiply to ND-tensors

and even apply scalar functions element-wise (log, sin, exp, ...)

you can slice, reshape, and even index a single element (generally
don’t do that!)

PyTorch often lets you broadcast operations (just like in numpy)

if a PyTorch operation supports broadcast, then its Tensor arguments
can be automatically expanded to be of equal sizes (without making
copies of the data).3

3Important - read and understand this after the lab:
https://pytorch.org/docs/stable/notes/broadcasting.html
Jonathon Hare and Antonia Marcu COMP6258 21 / 23

Tensors, batches and vectorisation

The reality of training a model is that we neither use gradient descent
or stochastic gradient descent; we do something in-between called
mini-batch SGD.

This works on batches of data (e.g. small subsets of the training set)

These batches are assembled into a tensor

Broadcasting is used to apply operations/functions to all the samples
in the batch tensor in parallel to compute a loss vector

the loss vector is summed/averaged using a vectorised method (e.g.
.sum())

Jonathon Hare and Antonia Marcu COMP6258 22 / 23



Homework

PyTorch Tensor 101:
https://colab.research.google.com/gist/jonhare/

d98813b2224dddbb234d2031510878e1/notebook.ipynb

Watch and understand this:
https://southampton.cloud.panopto.eu/Panopto/Pages/Viewer.

aspx?id=c62809ad-af4d-4c7f-89e1-b26f00f85cd9

Jonathon Hare and Antonia Marcu COMP6258 23 / 23

https://colab.research.google.com/gist/jonhare/d98813b2224dddbb234d2031510878e1/notebook.ipynb
https://colab.research.google.com/gist/jonhare/d98813b2224dddbb234d2031510878e1/notebook.ipynb
https://southampton.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=c62809ad-af4d-4c7f-89e1-b26f00f85cd9
https://southampton.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=c62809ad-af4d-4c7f-89e1-b26f00f85cd9

