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Differentiation
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Recap: what is the derivative of a function of one variable?
The derivative in 1D

Recall that the gradient of a straight line is
dy
dx .
For an arbitrary real-valued function, f , we
can approximate the derivative at a point a,
f ′(a), using the gradient of the secant line
defined by (a, f (a)) and a point a small
distance, h, away (a + h, f (a + h)):
f ′(a) ≈ f (a+h)−f (a)

h .
This expression is Newton’s Quotient.

As h becomes smaller, the approximated
derivative becomes more accurate.

If we take the limit as h → 0, then we
have an exact expression for the derivative:
df
da = f ′(a) = limh→0

f (a+h)−f (a)
h .

dy

dx
f (a)

f (a + h)

f (a + h)f (a + h)
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Recap: what are derivatives and how do we find them?
The derivative of y = x2 from first principles

y = x2

dy
dx = lim

h→0

(x + h)2 − x2

h
dy
dx = lim

h→0

x2 + h2 + 2hx − x2

h
dy
dx = lim

h→0

h2 + 2hx
h

dy
dx = lim

h→0
(h + 2x)

dy
dx = 2x
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Intuition: What does the gradient dy/ dx tell us

The ‘rate of change’ of y with respect to x .
By how much does y change if I make a small change to the x .
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Why should we care?
Solving a simple problem with differentiation

At what angle should a javelin be thrown to
maximise the distance travelled?
Assume initial velocity u = 28 m s−1 and
g = 9.8 m s−2

Choose to ignore launch height as it is
negligable compared to distance travelled.
Kinematics equations:

x = ut cos(θ) = 28t cos(θ)
y = ut sin(θ) − 0.5gt2 = 28t sin(θ) − 4.9t2
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Why should we care?
Solving a simple problem with differentiation

x = 28t cos(θ)
y = 28t sin(θ) − 4.9t2

Javelin hits ground when y = 0 and we
only care about t > 0:

0 = 28t sin(θ) − 4.9t2

=⇒ t = 28
4.9 sin(θ)

Substituting into the horizontal component:

x = 28 28
4.9 sin(θ) cos(θ) = 80 sin(2θ)
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Why should we care?
Solving a simple problem with differentiation

max
θ

80 sin(2θ)

s.t. 0 ≤ θ ≤ π

2
Compute derivative w.r.t θ and set to zero:

0 = d(80 sin(2θ))
dθ

= 160 cos(2θ)

=⇒ θ = 1
2 cos−1(0) = π

4

Irrespective of the initial velocity maximum
distance is acheived at 45◦.
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Abstraction: Solving problems by minimising an objective

To compute the parameter (angle) for the javelin example we
maximised the equation for distance travelled.
We can solve all kinds of problems if we can:

formulate a loss or cost function.
minimise the loss with respect to the parameter(s)1.

Problems:
The loss must be differentiable (or rather you must be able to compute
or estimate its gradient somehow).
The loss function could be arbitrarily complex... you might not be able
to analytically compute the solution (or the gradient).
Some loss functions might have many minima; you might have to settle
for finding a sub-optimal one (or a saddle-point).

1Note: maximising a distance is the same as minimising a negative distance
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A simple algorithm for minimising a function
Gradient Descent

How can you numerically estimate the
value of the parameter θ that minimises a
loss function, L(θ)?
Really intuitive idea: starting from an initial
guess, θ(0), take small steps in the direction
of the negative gradient.

Gradient Descent:

θ(i+1) = θ(i) − λdL
dθ where λ is the learning rate

θ(0)

θ(1)

θ(2)
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Javelin throwing again, but with Python code
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Derivatives of more general functions

Almost all complex functions can be broken into simpler parts (often
with very simple derivatives).
You can add (or subtract) sub-functions, multiply (or divide)
sub-functions and make functions of functions.

The sum rule, product rule and chain rule tell you how to differentiate
these.

If you break down functions into their constituent parts computing
the derivative becomes very easy
Example: the sin function can be written in terms of exponentials
(Euler’s formula) and the derivative of an exponential ex is just ex . . .
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Derivatives of more general functions

Most interesting functions that we might want to work with have
more than one parameter that we might want to optimise.

In many real applications it can be millions of parameters.
Partial derivatives ∂f

∂xi
let us compute the gradient of the i-th

parameter by holding the other parameters constant.
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Back to programming
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Programming is really just function composition and
control statements

At the end of the day computer programs are just compositions of
really simple functions that computer processors can compute:
arithmetic operations (add, multiply, divide, ...), logical operations
(and, or, not, comparisons...), operations that move data, etc.
Many of these primitive operations have well defined gradients with
respect to their operands.
The chain rule tells us how to compute gradients of composite
functions.

So, in principle we can find the optimal “parameters” of a computer
program designed to solve a specific task by following the gradients to
optimise it.
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Differentiating Branches

Code - if-else statement

if a > 0.5:
b = 0

else:
b = 2 * a

Math

b(a) =
{

0 if a > 0.5
2a if a ≤ 0.5

∂b
∂a =

{
0 if a > 0.5
2 if a ≤ 0.5
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Differentiating Loops

Code - for loop statement

b = 1
for i in range (3):

b = b + b * a

Math
b0 = 1
b1 = b0 + b0a = 1 + a
b2 = b1 + b1a = 1 + 2a + a2

b3 = b2 + b2a = 1 + 3a + 3a2 + a3

∂b
∂a = 3 + 6a + 3a2
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Can all programs be differentiable?

We can differentiate through lots of types of programs and algorithms
(even the Gradient Descent algorithm is itself differentiable!), but...
not every operation or function has useful gradients

discontinuities, large areas of zero-gradient, ...
Computer science researchers are actively developing mathematical
‘tricks’ to circumvent many of these problems.

Relaxations of functions that behave almost the same, but have well
defined gradients.
Reparameterisations of functions involving randomness.
Approximations of useable gradients for functions that have ill-posed
gradients.
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What kinds of functional building blocks are common?

Today, the most common operations with parameters are:
Vector addition: the input vector to a function is added to a vector of
weights.
Vector-Matrix multiplication: the input vector to the function is
multiplied with a matrix of weights.
Convolution: the input vector (or matrix...) is ‘convolved’ with a set of
weights.
(in all these cases ‘weights’ are the parameters which are learned)

The above operations are linear, so they are often combined with
element-wise nonlinearities; e.g.:

max(0, x) aka ReLU.
tanh(x).

1
1+e−x aka sigmoid or the logistic function.
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Real Examples of Differentiable Programming
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Playing Games

You can use differentiable programming to write (and train) ‘agents’
that can play games.
It can be hard to get a gradient from a single game involving many
moves, but there is a clever trick which allows good estimates of
gradients to be created over the average of many games.
This is broadly the area of what is called reinforcement learning.i

i
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Playing Games
Demo: AlphaStar
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Object detection

Consider a function that takes an image as input and produces an
array of bounding boxes and corresponding labels.
With enough training data we can learn the parameters required to
detect objects in images.i

i
“genfigures/figures/objdet-sets.tikz.tikz” — 2022/7/23 — 18:11 — page 22 — #1 i
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Object detection
Demo
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Drawing

We could envisage a differentiable function that takes in a set of line
coordinates and turns them into an image...
With such a function we can optimise the line coordinates so they e.g.
match a photograph, thus automatically creating a sketch.

Jonathon Hare and Antonia Marcu Differentiable Programming 26 / 31



Drawing
Demo
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Drawing
Demo
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Where is this all going?
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Software 2.0
There is a revolution happening and you’re going to be part of it!

Image credit: Andrei Karpathy
https://karpathy.medium.com/software-2-0-a64152b37c35
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https://karpathy.medium.com/software-2-0-a64152b37c35


Any Questions?
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