
Follow
the
Gradient

The power of differentiation

Jonathon Hare

Vision, Learning and Control
University of Southampton

Jonathon Hare Differentiation 2 / 27



Topics

The big idea: optimisation by following gradients
Recap: what are gradients and how do we find them?
Recap: Singular Value Decomposition and its applications
Example: Computing SVD using gradients - The Netflix Challenge

Jonathon Hare Differentiation 3 / 27

The big idea: optimisation by following gradients

Fundamentally, we’re interested in machines that we train by
optimising parameters

How do we select those parameters?
In deep learning/differentiable programming we typically define an
objective function that we minimise (or maximise) with respect to
those parameters
This implies that we’re looking for points at which the gradient of the
objective function is zero w.r.t the parameters

Jonathon Hare Differentiation 4 / 27



The big idea: optimisation by following gradients

Gradient based optimisation is a big field!
First order methods, second order methods, subgradient methods...

With deep learning we’re primarily interested in first-order methods1.
Primarily using variants of gradient descent: a function F (x) has a
minima2 (or a saddle-point) at a point x = a where a is given by
applying an+1 = an − α∇F (an) until convergence from some initial
point a0.

1Second order gradient optimisers are potentially better, but for systems with many
variables are currently impractical as they require computing the Hessian.

2not necessarily global or unique
Jonathon Hare Differentiation 5 / 27

Recap: what are gradients and how do we find them?
The derivative in 1D

Recall that the gradient of a straight line is
∆y
∆x .
For an arbitrary real-valued function, f (a),
we can approximate the derivative, f ′(a)
using the gradient of the secant line defined
by (a, f (a)) and a point a small distance, h,
away (a + h, f (a + h)): f ′(a) ≈ f (a+h)−f (a)

h .

This expression is ‘Newton’s Quotient’ or
‘Fermat’s Difference Quotient’.
As h becomes smaller, the approximated
derivative becomes more accurate.
If we take the limit as h → 0, then we
have an exact expression for the derivative:
df
da = f ′(a) = limh→0

f (a+h)−f (a)
h .

Jonathon Hare Differentiation 6 / 27



Recap: what are gradients and how do we find them?
The derivative of y = x2 from first principles

y = x2

dy
dx = lim

h→0

(x + h)2 − x2

h
dy
dx = lim

h→0

x2 + h2 + 2hx − x2

h
dy
dx = lim

h→0

h2 + 2hx
h

dy
dx = lim

h→0
(h + 2x)

dy
dx = 2x

Jonathon Hare Differentiation 7 / 27

Recap: what are gradients and how do we find them?
Aside: numerical approximation of the derivative

For numerical computation of derivatives it
is better to use a “centralised” definition of
the derivative:

f ′(a) = limh→0
f (a+h)−f (a−h)

2h
The bit inside the limit is known as the
symmetric difference quotient
For small values of h this has less error
than the standard one-sided difference
quotient.

Jonathon Hare Differentiation 8 / 27



Recap: what are gradients and how do we find them?
Aside: numerical approximation of the derivative

If you are going to use difference quotients to estimate derivatives you
need to be aware of potential rounding errors due to floating point
representations.

Calculating derivatives this way using less than 64-bit precision is rarely
going to be useful. (Numbers are not represented exactly, so even if h
is represented exactly, x + h will probably not be)
You need to pick an appropriate h - too small and the subtraction will
have a large rounding error!

Jonathon Hare Differentiation 9 / 27

Recap: what are gradients and how do we find them?
Derivatives of deeper functions

Deep learning is all about optimising deeper functions; functions that
are compositions of other functions

e.g. z = f ◦ g(x) = f (g(x))
The chain rule of calculus tells us how to differentiate compositions of
functions:

dz
dx = dz

dy
dy
dx

Jonathon Hare Differentiation 10 / 27



Recap: what are gradients and how do we find them?
Example: differentiating z = x4

Note that this is a silly example that just serves to demonstrate the principle!

z = x4

z = (x2)2 = y2 where y = x2

dz
dx = dz

dy
dy
dx = (2y)(2x) = (2x2)(2x) = 4x3

Equivalently, from first principles:
z = x4

dz
dx = lim

h→0

(x + h)4 − x4

h
dz
dx = lim

h→0

h4 + 4h3x + 6h2x2 + 4hx3 + x4 − x4

h
dz
dx = lim

h→0
h3 + 4h2x + 6hx2 + 4x3 = 4x3

Jonathon Hare Differentiation 11 / 27

Recap: what are gradients and how do we find them?
Vector functions

What if we’re dealing with a vector function, y(t)?
This can be split into its constituent coordinate functions:
y(t) = (y1(t), . . . , yn(t)).
Thus the derivative is a vector (the ‘tangent vector’),
y ′(t) = (y ′

1(t), . . . , y ′
n(t)), which consists of the derivatives of the

coordinate functions.
Equivalently, y ′(t) = limh→0

y(t+h)−y(t)
h if the limit exists.

Jonathon Hare Differentiation 12 / 27



Recap: what are gradients and how do we find them?
Functions of multiple variables: partial differentiation

What if the function we’re trying to deal with has multiple variables3

(e.g. f (x , y) = x2 + xy + y2)?
This expression has a pair of partial derivatives, ∂f

∂x = 2x + y and
∂f
∂y = x + 2y , computed by differentiating with respect to each variable
x and y whilst holding the other(s) constant.

In general, the partial derivative of a function f (x1, . . . , xn) at a point
(a1, . . . , an) is given by:
∂f
∂xi

(a1, . . . , an) = limh→0
f (a1,...,ai +h,...,an)−f (a1,...,ai ,...,an)

h .
The vector of partial derivatives of a scalar-value multivariate
function, f (x1, . . . , xn) at a point (a1, . . . , an), can be arranged into a
vector: ∇f (a1, . . . , an) =

(
∂f
∂x1

(a1, . . . , an), . . . , ∂f
∂xn

(a1, . . . , an)
)
.

This is the gradient of f at a.
In the case of a vector-valued multivariate function, the partial
derivatives form a matrix called the Jacobian.

3A multivariate function
Jonathon Hare Differentiation 13 / 27

Recap: what are gradients and how do we find them?
Functions of vectors and matrices: partial differentiation

For the kinds of functions (and programs) that we’ll look at
optimising in this course have a number of typical properties:

They are scalar-valued
We’ll look at programs with multiple losses, but ultimately we can just
consider optimising with respect to the sum of the losses.

They involve multiple variables, which are often wrapped up in the
form of vectors or matrices, and more generally tensors.
How will we find the gradients of these?

Jonathon Hare Differentiation 14 / 27



Recap: what are gradients and how do we find them?
The chain rule for vectors

Suppose that x ∈ Rm, y ∈ Rn, g maps from Rm to Rn and f maps from
Rn to R.
If y = g(x) and z = f (y), then

∂z
∂xi

=
∑

j

∂z
∂yj

∂yj
∂xi

.

Equivalently, in vector notation:

∇xz = (∂y
∂x )⊤∇yz

where ∂y
∂x is the n × m Jacobian matrix of g .

Jonathon Hare Differentiation 15 / 27

Recap: what are gradients and how do we find them?
The chain rule for Tensors

Conceptually, the simplest way to think about gradients of tensors is
to imagine flattening them into vectors, computing the vector-valued
gradient and then reshaping the gradient back into a tensor.

In this way we’re still just multiplying Jacobians by gradients.
More formally, consider the gradient of a scalar z with respect to a
tensor X to be denoted as ∇Xz .

Indices into X now have multiple coordinates, but we can generalise by
using a single variable i to represent the complete tuple of indices.

For all index tuples i , (∇Xz)i gives ∂z
∂Xi

.

Thus, if Y = g(X) and z = f (Y) then ∇Xz =
∑

j(∇XYj) ∂z
∂Yj

.

Jonathon Hare Differentiation 16 / 27



Recap: what are gradients and how do we find them?
Example: ∇W f (XW )

Let D = XW where the rows of X ∈ Rn×m contain some fixed
features, and W ∈ Rm×h is a matrix of weights.
Also let L = f (D) be some scalar function of D that we wish to
minimise.
What are the derivatives of L with respect to the weights W ?

Jonathon Hare Differentiation 17 / 27

Recap: what are gradients and how do we find them?
Example: ∇W f (XW )

Start by considering a specific weight, Wuv : ∂L
∂Wuv

=
∑

i ,j
∂L

∂Dij

∂Dij
∂Wuv

.
We know that ∂Dij

∂Wuv
= 0 if j ̸= v because Dij is the dot product of

row i of X and column j of W .
Therefore, we can simplify the summation to only consider cases
where j = v :

∑
i ,j

∂L
∂Dij

∂Dij
∂Wuv

=
∑

i
∂L

∂Div
∂Div
∂Wuv

.
What is ∂Div

∂Wuv
?

Div =
m∑

k=1
XikWkv

∂Div
∂Wuv

= ∂

∂Wuv

m∑
k=1

XikWkv =
m∑

k=1

∂

∂Wuv
XikWkv

∴
∂Div
∂Wuv

= Xiu

Jonathon Hare Differentiation 18 / 27



Recap: what are gradients and how do we find them?
Example: ∇W f (XW )

Putting every together, we have: ∂L
∂Wuv

=
∑

i
∂L

∂Div
Xiu.

As we’re summing over multiplications of scalars, we can change the
order: ∂L

∂Wuv
=

∑
i Xiu

∂L
∂Div

.
and note that the sum over i is doing a dot product with row u and
column v if we transpose Xiu to X⊤

ui : ∂L
∂Wuv

=
∑

i X⊤
ui

∂L
∂Div

.

We can then see that if we want this for all values of W it simply
generalises to: ∂L

∂W = X⊤ ∂L
∂D .

Jonathon Hare Differentiation 19 / 27

Recap: what are gradients and how do we find them?
STOP! What does a gradient actually mean?

In your early calculus lessons you likely had it hammered into you that
gradients represent rates of change of functions.
This is of course totally true...
But, it isn’t a particularly useful way to think about the gradients of a
loss with respect to the weights of a parameterised function.

The gradient of the loss with respect to a parameter tells you
how much the loss will change with a small perturbation to that
parameter.

Jonathon Hare Differentiation 20 / 27



Recap: Singular Value Decomposition and its applications

Let’s now change direction — we’re going to look at an early success story
resulting from using some differentiation and the Singular Value
Decomposition (SVD).

For complex A :

A = UΣV ∗

where V ∗ is the conjugate transpose of V .

For real A :

A = UΣV ⊤

Jonathon Hare Differentiation 21 / 27

Recap: Singular Value Decomposition and its applications

SVD has many uses:
Computing the Eigendecomposition:

Eigenvectors of AA⊤ are columns of U,
Eigenvectors of A⊤A are columns of V ,
and the non-zero values of Σ are the square roots of the non-zero
eigenvalues of both AA⊤ and A⊤A.

Dimensionality reduction
...use to compute PCA

Computing the Moore-Penrose Pseudoinverse
for real A: A+ = V Σ+U⊤ where Σ+ is formed by taking the reciprocal
of every non-zero diagonal element and transposing the result.

Low-rank approximation and matrix completion
if you take the ρ columns of U, and the ρ rows of V ⊤ corresponding to
the ρ largest singular values, you can form the matrix Aρ = UρΣρV ⊤

ρ

which will be the best rank-ρ approximation of the original A in terms
of the Frobenius norm.

Jonathon Hare Differentiation 22 / 27



Example: Computing SVD using gradients - The Netflix
Challenge

There are many standard ways of computing the SVD:
e.g. ‘Power iteration’, or ‘Arnoldi iteration’ or ‘Lanczos algorithm’
coupled with the ‘Gram-Schmidt process’ for orthonormalisation

but, these don’t necessarily scale up to really big problems
e.g. computing the SVD of a sparse matrix with 17770 rows, 480189
columns and 100480507 non-zero entries!
this corresponds to the data provided by Netflix when they launched
the Netflix Challenge in 2006.

OK, so what can you do?
The ‘Simon Funk’ solution: realise that there is a really simple (and
quick) way to compute the SVD by following gradients...

Jonathon Hare Differentiation 23 / 27

Example: Computing SVD using gradients - The Netflix
Challenge
Deriving a gradient-descent solution to SVD

One of the definitions of rank-ρ SVD of a matrix A is that it
minimises reconstruction error in terms of the Frobenius norm.
Without loss of generality we can write SVD as a 2-matrix
decomposition A = ÛV̂ T by rolling in the square roots of Σ to both
Û and V̂ : Û = UΣ0.5 and V̂ ⊤ = Σ0.5V ⊤.
Then we can define the decomposition as finding min

Û,V̂
(∥A − ÛV̂ ⊤∥2

F)

Jonathon Hare Differentiation 24 / 27



Example: Computing SVD using gradients - The Netflix
Challenge
Deriving a gradient-descent solution to SVD

Start by expanding our optimisation problem:

min
Û,V̂

(∥A − ÛV̂ ⊤∥2
F) = min

Û,V̂
(
∑

r

∑
c

(Arc − Ûr V̂ ⊤
:,c)2)

= min
Û,V̂

(
∑

r

∑
c

(Arc −
ρ∑

p=1
ÛrpV̂cp)2)

Let erc = Arc −
∑ρ

p=0 ÛrpV̂cp denote the error. Then, our problem
becomes:

Minimise J =
∑

r

∑
c

e2
rc

We can then differentiate with respect to specific variables Ûrq and V̂cq
Jonathon Hare Differentiation 25 / 27

Example: Computing SVD using gradients - The Netflix
Challenge
Deriving a gradient-descent solution to SVD

We can then differentiate with respect to specific variables Ûrq and V̂cq:
∂J

∂Ûrq
=

∑
r

∑
c

2erc
∂e

∂Ûrq
= −2

∑
r

∑
c

V̂cqerc

∂J
∂V̂cq

=
∑

r

∑
c

2erc
∂e

∂V̂cq
= −2

∑
r

∑
c

Ûrqerc

and use this as the basis for a gradient descent algorithm:

Ûrq ⇐ Ûrq + λ
∑

r

∑
c

V̂cqerc

V̂cq ⇐ V̂cq + λ
∑

r

∑
c

Ûrqerc

Jonathon Hare Differentiation 26 / 27



Example: Computing SVD using gradients - The Netflix
Challenge
Deriving a gradient-descent solution to SVD

A stochastic version of this algorithm (updates on one single item of
A at a time) helped win the Netflix Challenge competition in 2009.
It was both fast and memory efficient

Jonathon Hare Differentiation 27 / 27


