
Make a
forward pass
before the
backward pass

Backpropagation: Understanding the implications of
the chain rule

Jonathon Hare

Vision, Learning and Control
University of Southampton

A lot of the ideas in this lecture come from Andrej Karpathy’s blog post on backprop
(https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b) and his CS231n Lecture Notes
(http://cs231n.github.io/optimization-2/)

Jonathon Hare Backpropagation 2 / 13

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
http://cs231n.github.io/optimization-2/

Topics

A quick look at an MLP again
The chain rule (again)
Uninititive gradient effects
A closer look at basic stochastic gradient descent algorithms

Jonathon Hare Backpropagation 3 / 13

The unbiased Multilayer Perceptron (again)...

x1

x2

x3

x4

h1

h2

h3

h4

h5

o1 ŷ1

o2 ŷ2

w (1)
ji

w (2)
kj

Hidden
layer

Input
layer

Output
layer

Without loss of generality, we can write the above as:
ŷ = g(f (x; W (1)); W (2)) = g(W (2)f (W (1)x))

where f and g are activation functions.
Jonathon Hare Backpropagation 4 / 13

Gradients of our simple unbiased MLP

Let’s assume MSE Loss

ℓMSE (ŷ , y) = ∥ŷ − y∥2
2

What are the gradients?

∇W ∗ℓMSE (g(W (2)f (W (1)x)), y)

Clearly we need to apply the chain rule (vector form) multiple times
We could do this by hand
(But we’re not that crazy!)

Jonathon Hare Backpropagation 5 / 13

Let’s go back to a simpler expression

f (x , y , z) = (x + y)z
≡ qz where q = (x + y)

Clearly the partial derivatives of the subexpressions are trivial:

∂f /∂z = q ∂f /∂q = z
∂q/∂x = 1 ∂q/∂y = 1

and the chain rule tells us how to combine these:

∂f /∂x = ∂f /∂q · ∂q/∂x = z
∂f /∂y = ∂f /∂q · ∂q/∂y = z

so ∇[x ,y ,z]f = [z , z , q]
Jonathon Hare Backpropagation 6 / 13

A computational graph perspective

f (x , y , z) = (x + y)z

Jonathon Hare Backpropagation 7 / 13

An intuition of the chain rule

Notice how every operation in the computational graph given its
inputs can immediately compute two things:

1 its output value
2 the local gradient of its inputs with respect to its output value

The chain rule tells us literally that each operation should take its
local gradients and multiply them by the gradient that flows
backwards into it

Jonathon Hare Backpropagation 8 / 13

This is backpropagation

The backprop algorithm is just the idea that you can perform the
forward pass (computing and caching the local gradients as you go),
and then perform a backward pass to compute the total gradient by
applying the chain rule and re-utilising the cached local gradients
Backprop is just another name for ‘Reverse Mode Automatic
Differentiation’...

Jonathon Hare Backpropagation 9 / 13

Unintuitive effects I: Multiplication

Consider the multiplication operation f (a, b) = a × b.
The gradients are clearly ∂f /∂b = a and ∂f /∂a = b.

(in a computational graph these would be the local gradients w.r.t the
inputs)

If a is large and b is tiny the gradient assigned to b will be large, and
the gradient to a small.
This has implications for e.g. linear classifiers (w⊤xi) where you
perform many multiplications

the magnitude of the gradient is directly proportional to the magnitude
of the data
multiply xi by 1000, and the gradients also increase by 1000
if you don’t lower the learning rate to compensate your model might
not learn
Hence you need to always pay attention to data normalisation!

Jonathon Hare Backpropagation 10 / 13

Unintuitive effects II: vanishing gradients of the sigmoid

It used to be popular to use sigmoids (or tanh) in the hidden layers...
Gradient of σ(x) = σ(x)(1 − σ(x))
Thus as part of a larger network where this is the local gradient, if x
is large (+ve or -ve), then all gradients backwards from this point will
be zero due to multiplication of the chain rule

Why might x be large?
Maximum gradient is achieved when x = 0 (σ(x) = 0.5, dx = 0.25)

This means that the maximum gradient that can flow out of a sigmoid
will be a quarter of the input gradient

What’s the implication of this in a deep network with sigmoid
activations?

Jonathon Hare Backpropagation 11 / 13

Unintuitive effects III: dying ReLUs

Modern networks tend to use ReLUs
Gradient is 1 for x > 0 and 0 otherwise
Consider ReLU(w⊤x)

What happens if w is initialised badly?
What happens if w receives an update that means that w⊤x < 0 ∀ x?

These are dead ReLUs - ones that never fire for all training data
Sometimes you can find that you have a large fraction of these
if you get them from the beginning, check weight initialisation and
data normalisation
if they’re appearing during training, maybe λ is too big?

Jonathon Hare Backpropagation 12 / 13

Unintuitive effects IV: Exploding gradients in recurrent
networks

Recurrent networks apply a function recursively for some number of
timesteps
Often this recursion involves a multiplication at each timestep, the
gradients of which are all multiplied together because of the chain
rule...
Consider z = a

∏∞
n b

z → 0 if |b| < 1
z → ∞ if |b| > 1

Same thing happens in the backward pass of an RNN (although with
matrices rather than scalars, so the reasoning applies to the largest
eigenvalue)

Jonathon Hare Backpropagation 13 / 13

