Convolutional Neural
Networks

Jonathon Hare

Vision, Learning and Control
University of Southampton

Many pictures used here are from https://github.com/vdumoulin/conv_arithmetic

a little history of
VISION

1958
Rosenblatt’s Perceptron

Frank Rosenblat

y= () wizi+b) =p(w'x +b)

i=1

VO a
lPaaead
O R R

O

eV gy

d809a
B A ROX)

vdaa2a
Pasva

davasa

R T e ——

1959
Receptive Fields of Single Neurons in the Cat’s Striate Cortex

Electrical signal
from brain

Visual area
of brain

Stimulus

1970
IS vision innate or acquired?

1998

LeNet-5;: Convolutional Neural Networks

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
32x32 S2:f. maj)s
6@14x1

|
‘ Full conAection ’ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Important Concept 1:
Receptive Fields

e Parts of the visual system consist spatially local
connections being fed into the neurons

* |n such a scenario, we can think about the
Receptive Field (RF) of a neuron

Important Concept 2:
Equivariance

« A function f(x) is equivariant to a function g if

9(x)) = g(fix))

 |f the input changes, the output changes the
same way

Important Concept 3:
Translational Equivariance

» Consider what would happen if you had grids of neurons
with their own receptive fields, but with shared weights.

* Each neuron would respond in the same way to a
given stimulus within its RF

 |f an input stimulus were moved over the grid, then the
outputs of the neurons would move in the same way

e This is translational equivariance and this is the
key property of a ‘Convolutional Layer’ in a network

Signal Processing:
Convolution and Cross-Correlation

e Convolution is an element-wise multiplication in the
Fourier domain (c.f. Convolution Theorem)

o fx g = ifft(fft(f) . fft(g))

* Whilst fand g might only contain real numbers,
the FFTs are complex (real + imagj)

* Need to do complex multiplication!

(z+vy1)(u+vt) = (zu—yv)+ (zv + yu)?

Template Convolution

* |n the time domain, convolution is:

de > : ‘
(f * g)(1) = / f(r)g(t —7)dr
= f(t —=7)g(7T)dr.
- Notice that the image or kernel is “flipped” in time

* Also notice that the is no normalisation or similar

Template Convolution

output kernel (flipped)

. input
i | h]19]o0fn0 <z,04
(1,1
s d (0’1)(1,1)|(2,1)'
a prm—
I I 2 8 0l ﬂ?j’
——— o - T
/'____,_—--"" —-——
I
[—
////
| oanns”

What if you don't flip the
kernel?

Obviously if the kernel is symmetric there is no difference

However, you're actually not computing convolution, but
another operation called cross-correlation

(f»g)(r) / ") gt +) dt.

* represents the complex conjugate

(you can compute this with the multiplication of the FFTs
just like convolution: iIFFT(FFT(f)* . FFT(Q))

“Convolution” in Neural Networks

- Important Concept 4: “Convolution” in the neural network

literature almost always refers to an operation akin cross-
correlation

* An element-wise multiplication of learned weights across a

receptive field, which is repeated at various positions across
the input.

* Normally, we also add an additional bias term

* Most often a single one (for each kernel), but could be one
for each spatial position.

* There are also other parameters of these “convolutions”...

Convolutional Layers

* |n a convolutional layer, we have multiple kernels or
filters which are learnt (plus the biases)

e Each filter produces a single “Response Map” or
“Feature Map” which are stacked together as
“channels” of the resultant output tensor

Efficient Computation of
Convolutions

» Classical theory would suggest that the most efficient way
to compute convolution (or cross-correlation) is via the
Fourier transform if the kernels are larger

» Or via direct spatial-domain implementation for small
kernels

* In neural networks we need to be able to compute many
convolutions on a single input as quickly as possible

« We have specialised multi-core hardware and efficient
GEneral Matrix Multiply (GEMM) in BLAS to help
though...

Convolution as a Matrix
Multiplication

e The convolution operation can be expressed as a matrix
multiplication if either the kernel or the signal is
manipulated into a form known as a Toeplitz matrix:

e For 2D convolution one would use a “doubly block
circulant matrix”

- Important Concept 5: convolution is a linear operator

N-d Tensor Convolution

* In neural networks we want to expand our use of
convolutions to work with tensors of any number of

dimensions

e |fthe inputis say C x Hx W, where C is the
“‘channels” dimension and H & W are the spatial
dimensions, we would define a convolutional
kernel of size C x K x L

N-d Tensor Convolution

* We also don't typically want a single kernel, but
rather many

« Each one acting as a feature detector producing
a feature map

* We can just add another dimension to the kernel
tensor to incorporate convolution with all kernels
INn one operation:

Zijk= Z Vijem—tkin—1Kiimn

l,m,n

&
-

Feature maps

T T
Biases B+ &+
| |
Kernel/ -
weights

. 3x3x3
T

. +

|

3

3X2X3X3

2x5x5

Data Types

» Convolutions are applied to many dimensionalities

and types of data - for example:

Single Channel

1-D Audio

2D Audio data preprocessed into a
spectrogram; greyscale images

3-D Volumetric data, e.g. CT scans

Multichannel

Multiple sensor data over
time

Colour image data (e.g.
RGB)

Colour video data

Convolutional Layer
Parameters

e The core parameters of a convolution are:

* The dimensionality (is it 1-D, 2-D, 3-D in the
spatial sense?)

» The spatial extent of the kernel(s)

* The number of kernels (or output channels)

2d convolutions, kernel
size=(1,1)

* 1x1 convolutions are a common place operation,
but might seem non-sensical at first

* They do not capture any local spatial information

* They are used to change the number of channels
without affecting the spatial resolution

Padding

« What happens to a convolution at the edges of its
spatial extent?

* |n signal processing, using the Fourier transform
the “image” wraps around, so the output is the
same size as the input

 |In spatial convolution if we do nothing, the output
will be smaller...

* S0, we often use zero-padding to retain the size

Arbitrary padding

No padding “same” padding

Striding

e Convolution is expensive... could we make it
cheaper by skipping over positions?

Stride=(2,2)

Fractional Striding/
Transpose Convolution

 \What if we consider fractional strides between O
and 17?

* Intuitively, if bigger strides subsample, then
fractional strides should upsample

* This is equivalent to “expanding” the input by
padding and performing convolution

e And potentially also striding by adding zeros
around all the values

Transpose convolution, stride=1

No padding Arbitrary padding

Transpose convolution, stride=2

P

-
-

~
-
-

\

- B
~ N
‘s \N_” N
-~
- N
>
NooeTN
N
N >
- . \\
.
Phg (S -
AN
N
- N e
~ N
N7
PR
~ > 270N
- -
N - N ’$
-
LN L2

NP4
o
-

-

N
\’4
PR

No padding Padding

* You'll often find fractionally stride convolutions described
as “transposed convolutions”

» That's because they can be implemented by transposing
the kernel’s Toeplitz matrix before the multiply

 Some old literature also refers to this as “deconvolution”

 Please don't do that!!

» Also note that this might not be the best way of upsampling
(see https://distill. pub/2016/deconv-checkerboard/)

Pooling

« Striding is a popular way to reduce spatial
dimensionality in modern networks

e before striding was devised, pooling, was the
defacto way of reducing dimensionality

Max Pooling, 2x2, stride=2

12 1 20 [30 | O

8§ |12 2 | O 2 x 2 Max-Pool 20 | 30
34|70 | 37| 4 112| 37

1121100 | 25 | 12

Max Pooling Gradients

* The gradient of the max pooling operation is 1

everywhere a max value was selected, and zero
elsewhere

e This means that implementations not only need
to record the max values in the forward-pass, but
also keep track of the positions of those
maximums for the backward pass

Average Pooling

2x2 average pooling, stride = 2

Local Versus Global Pooling

* The pooling operations on the previous slides are local
* They result in a feature map reducing in spatial size
» Global pooling reduces a feature map to a scalar

e SO atensor of many feature maps would be reduced
to a single feature vector

« Often used near the end of networks to flatten
feature maps into feature vectors that can be fed
into an MLP

Dilated Convolutions

* Sometimes we want to have larger receptive
fields in our networks

 \We can increase the kernel size to achieve
this, but this introduces more weights

* We can downsample/pool the input, but
this decreases spatial resolution

* Or we could ‘pad’ the kernel with zeros
throughout to increase the effective size
without increasing the number of
parameters

