
Convolutional Neural
Networks

Jonathon Hare

Vision, Learning and Control
University of Southampton

Many pictures used here are from https://github.com/vdumoulin/conv_arithmetic

a little history of
VISION

1958
Rosenblatt’s Perceptron

Frank Rosenblatt

1959
Receptive Fields of Single Neurons in the Cat’s Striate Cortex

David
Hubel

Torsten
Wiesel

1970
Is vision innate or acquired?

•

Colin Blakemore

1979
Neocognitron

Kunihiko Fukushima

1998
LeNet-5: Convolutional Neural Networks

Yann LeCun

Important Concept 1:
Receptive Fields

• Parts of the visual system consist spatially local
connections being fed into the neurons

• In such a scenario, we can think about the
Receptive Field (RF) of a neuron

Important Concept 2:
Equivariance

• A function f(x) is equivariant to a function g if
f(g(x)) = g(f(x))

• If the input changes, the output changes the
same way

Important Concept 3:
Translational Equivariance

• Consider what would happen if you had grids of neurons
with their own receptive fields, but with shared weights.

• Each neuron would respond in the same way to a
given stimulus within its RF

• If an input stimulus were moved over the grid, then the
outputs of the neurons would move in the same way

• This is translational equivariance and this is the
key property of a ‘Convolutional Layer’ in a network

Signal Processing:
Convolution and Cross-Correlation

• Convolution is an element-wise multiplication in the
Fourier domain (c.f. Convolution Theorem)

• fѰg = ifft(fft(f) . fft(g))

• Whilst f and g might only contain real numbers,
the FFTs are complex (real + imagj)

• Need to do complex multiplication!

Template Convolution
• In the time domain, convolution is:

• Notice that the image or kernel is “flipped” in time

• Also notice that the is no normalisation or similar

Template Convolution

What if you don’t flip the
kernel?

• Obviously if the kernel is symmetric there is no difference

• However, you’re actually not computing convolution, but
another operation called cross-correlation

• * represents the complex conjugate

• (you can compute this with the multiplication of the FFTs
just like convolution: iFFT(FFT(f)* . FFT(g))

“Convolution” in Neural Networks
• Important Concept 4: “Convolution” in the neural network

literature almost always refers to an operation akin cross-
correlation

• An element-wise multiplication of learned weights across a
receptive field, which is repeated at various positions across
the input.

• Normally, we also add an additional bias term

• Most often a single one (for each kernel), but could be one
for each spatial position.

• There are also other parameters of these “convolutions”…

Convolutional Layers

• In a convolutional layer, we have multiple kernels or
filters which are learnt (plus the biases)

• Each filter produces a single “Response Map” or
“Feature Map” which are stacked together as
“channels” of the resultant output tensor

Efficient Computation of
Convolutions

• Classical theory would suggest that the most efficient way
to compute convolution (or cross-correlation) is via the
Fourier transform if the kernels are larger

• Or via direct spatial-domain implementation for small
kernels

• In neural networks we need to be able to compute many
convolutions on a single input as quickly as possible

• We have specialised multi-core hardware and efficient
GEneral Matrix Multiply (GEMM) in BLAS to help
though…

Convolution as a Matrix
Multiplication

• The convolution operation can be expressed as a matrix
multiplication if either the kernel or the signal is
manipulated into a form known as a Toeplitz matrix:

• For 2D convolution one would use a “doubly block
circulant matrix”

• Important Concept 5: convolution is a linear operator

y = h * x =

h1 0 … 0 0
h2 h1 … ⋮ ⋮
h3 h2 … 0 0
⋮ h3 … h1 0

hm−1 ⋮ … h2 h1
hm hm−1 ⋮ ⋮ h2
0 hm … hm−2 ⋮
0 0 … hm−1 hm−2
⋮ ⋮ ⋮ hm hm−1
0 0 0 … hm

x1
x2
x3
⋮
xn

N-d Tensor Convolution

• In neural networks we want to expand our use of
convolutions to work with tensors of any number of
dimensions

• If the input is say C x H x W, where C is the
“channels” dimension and H & W are the spatial
dimensions, we would define a convolutional
kernel of size C x K x L

N-d Tensor Convolution
• We also don’t typically want a single kernel, but

rather many

• Each one acting as a feature detector producing
a feature map

• We can just add another dimension to the kernel
tensor to incorporate convolution with all kernels
in one operation:

Zi,j,k = ∑
l,m,n

Vl,j+m−1,k+n−1Ki,l,m,n

input

Kernel/
weights

2x5x5

3x2x3x3

3x3x3Feature maps

Biases 3

Data Types
• Convolutions are applied to many dimensionalities

and types of data - for example:

Single Channel Multichannel

1-D Audio Multiple sensor data over
time

2-D Audio data preprocessed into a
spectrogram; greyscale images

Colour image data (e.g.
RGB)

3-D Volumetric data, e.g. CT scans Colour video data

Convolutional Layer
Parameters

• The core parameters of a convolution are:

• The dimensionality (is it 1-D, 2-D, 3-D in the
spatial sense?)

• The spatial extent of the kernel(s)

• The number of kernels (or output channels)

2d convolutions, kernel
size=(1,1)

• 1x1 convolutions are a common place operation,
but might seem non-sensical at first

• They do not capture any local spatial information

• They are used to change the number of channels
without affecting the spatial resolution

Padding
• What happens to a convolution at the edges of its

spatial extent?

• In signal processing, using the Fourier transform
the “image” wraps around, so the output is the
same size as the input

• In spatial convolution if we do nothing, the output
will be smaller…

• So, we often use zero-padding to retain the size

No padding

Arbitrary padding

“same” padding

Striding
• Convolution is expensive… could we make it

cheaper by skipping over positions?

Stride=(2,2)

Fractional Striding/
Transpose Convolution

• What if we consider fractional strides between 0
and 1?

• Intuitively, if bigger strides subsample, then
fractional strides should upsample

• This is equivalent to “expanding” the input by
padding and performing convolution

• And potentially also striding by adding zeros
around all the values

Transpose convolution, stride=1

No padding Arbitrary padding

Transpose convolution, stride=2

No padding Padding

• You’ll often find fractionally stride convolutions described
as “transposed convolutions”

• That’s because they can be implemented by transposing
the kernel’s Toeplitz matrix before the multiply

• Some old literature also refers to this as “deconvolution”

• Please don’t do that!!

• Also note that this might not be the best way of upsampling
(see https://distill.pub/2016/deconv-checkerboard/)

Pooling

• Striding is a popular way to reduce spatial
dimensionality in modern networks

• before striding was devised, pooling, was the
defacto way of reducing dimensionality

Max Pooling, 2x2, stride=2

Max Pooling Gradients

• The gradient of the max pooling operation is 1
everywhere a max value was selected, and zero
elsewhere

• This means that implementations not only need
to record the max values in the forward-pass, but
also keep track of the positions of those
maximums for the backward pass

Average Pooling

Local Versus Global Pooling
• The pooling operations on the previous slides are local

• They result in a feature map reducing in spatial size

• Global pooling reduces a feature map to a scalar

• So a tensor of many feature maps would be reduced
to a single feature vector

• Often used near the end of networks to flatten
feature maps into feature vectors that can be fed
into an MLP

Dilated Convolutions
• Sometimes we want to have larger receptive

fields in our networks

• We can increase the kernel size to achieve
this, but this introduces more weights

• We can downsample/pool the input, but
this decreases spatial resolution

• Or we could ‘pad’ the kernel with zeros
throughout to increase the effective size
without increasing the number of
parameters

