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Rosenblatt’s Perceptron

Frank Rosenblat
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Receptive Fields of Single Neurons in the Cat’s Striate Cortex
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IS vision innate or acquired?
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LeNet-5;: Convolutional Neural Networks
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Important Concept 1:
Receptive Fields

e Parts of the visual system consist spatially local
connections being fed into the neurons

* |n such a scenario, we can think about the
Receptive Field (RF) of a neuron




Important Concept 2:
Equivariance

« A function f(x) is equivariant to a function g if

9(x)) = g(fix))

 |f the input changes, the output changes the
same way

Important Concept 3:
Translational Equivariance

» Consider what would happen if you had grids of neurons
with their own receptive fields, but with shared weights.

* Each neuron would respond in the same way to a
given stimulus within its RF

 |f an input stimulus were moved over the grid, then the
outputs of the neurons would move in the same way

e This is translational equivariance and this is the
key property of a ‘Convolutional Layer’ in a network




Signal Processing:
Convolution and Cross-Correlation

e Convolution is an element-wise multiplication in the
Fourier domain (c.f. Convolution Theorem)

o fx g = ifft(fft(f) . fft(g))

* Whilst fand g might only contain real numbers,
the FFTs are complex (real + imagj)

* Need to do complex multiplication!

(z+vy1)(u+vt) = (zu—yv)+ (zv + yu)?

Template Convolution

* |n the time domain, convolution is:

de > : ‘
(f * g)(1) = / f(r)g(t —7)dr
= f(t —=7)g(7T)dr.
- Notice that the image or kernel is “flipped” in time

* Also notice that the is no normalisation or similar




Template Convolution

output kernel (flipped)
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What if you don't flip the
kernel?

Obviously if the kernel is symmetric there is no difference

However, you're actually not computing convolution, but
another operation called cross-correlation

(f»g)(r) / ") gt + ) dt.

* represents the complex conjugate

(you can compute this with the multiplication of the FFTs
just like convolution: iIFFT(FFT(f)* . FFT(Q))




“Convolution” in Neural Networks

- Important Concept 4: “Convolution” in the neural network

literature almost always refers to an operation akin cross-
correlation

* An element-wise multiplication of learned weights across a

receptive field, which is repeated at various positions across
the input.

* Normally, we also add an additional bias term

* Most often a single one (for each kernel), but could be one
for each spatial position.

* There are also other parameters of these “convolutions”...

Convolutional Layers

* |n a convolutional layer, we have multiple kernels or
filters which are learnt (plus the biases)

e Each filter produces a single “Response Map” or
“Feature Map” which are stacked together as
“channels” of the resultant output tensor




Efficient Computation of
Convolutions

» Classical theory would suggest that the most efficient way
to compute convolution (or cross-correlation) is via the
Fourier transform if the kernels are larger

» Or via direct spatial-domain implementation for small
kernels

* In neural networks we need to be able to compute many
convolutions on a single input as quickly as possible

« We have specialised multi-core hardware and efficient
GEneral Matrix Multiply (GEMM) in BLAS to help
though...

Convolution as a Matrix
Multiplication

e The convolution operation can be expressed as a matrix
multiplication if either the kernel or the signal is
manipulated into a form known as a Toeplitz matrix:

e For 2D convolution one would use a “doubly block
circulant matrix”

- Important Concept 5: convolution is a linear operator




N-d Tensor Convolution

* In neural networks we want to expand our use of
convolutions to work with tensors of any number of

dimensions

e |fthe inputis say C x Hx W, where C is the
“‘channels” dimension and H & W are the spatial
dimensions, we would define a convolutional
kernel of size C x K x L

N-d Tensor Convolution

* We also don't typically want a single kernel, but
rather many

« Each one acting as a feature detector producing
a feature map

* We can just add another dimension to the kernel
tensor to incorporate convolution with all kernels
INn one operation:

Zijk= Z Vijem—tkin—1Kiimn

l,m,n
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Data Types

» Convolutions are applied to many dimensionalities

and types of data - for example:

Single Channel

1-D Audio

2D Audio data preprocessed into a
spectrogram; greyscale images

3-D Volumetric data, e.g. CT scans

Multichannel

Multiple sensor data over
time

Colour image data (e.g.
RGB)

Colour video data




Convolutional Layer
Parameters

e The core parameters of a convolution are:

* The dimensionality (is it 1-D, 2-D, 3-D in the
spatial sense?)

» The spatial extent of the kernel(s)

* The number of kernels (or output channels)

2d convolutions, kernel
size=(1,1)

* 1x1 convolutions are a common place operation,
but might seem non-sensical at first

* They do not capture any local spatial information

* They are used to change the number of channels
without affecting the spatial resolution




Padding

« What happens to a convolution at the edges of its
spatial extent?

* |n signal processing, using the Fourier transform
the “image” wraps around, so the output is the
same size as the input

 |In spatial convolution if we do nothing, the output
will be smaller...

* S0, we often use zero-padding to retain the size

Arbitrary padding

No padding “same” padding




Striding

e Convolution is expensive... could we make it
cheaper by skipping over positions?

Stride=(2,2)

Fractional Striding/
Transpose Convolution

 \What if we consider fractional strides between O
and 17?

* Intuitively, if bigger strides subsample, then
fractional strides should upsample

* This is equivalent to “expanding” the input by
padding and performing convolution

e And potentially also striding by adding zeros
around all the values




Transpose convolution, stride=1

No padding Arbitrary padding

Transpose convolution, stride=2
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* You'll often find fractionally stride convolutions described
as “transposed convolutions”

» That's because they can be implemented by transposing
the kernel’s Toeplitz matrix before the multiply

 Some old literature also refers to this as “deconvolution”

 Please don't do that!!

» Also note that this might not be the best way of upsampling
(see https://distill. pub/2016/deconv-checkerboard/)

Pooling

« Striding is a popular way to reduce spatial
dimensionality in modern networks

e before striding was devised, pooling, was the
defacto way of reducing dimensionality




Max Pooling, 2x2, stride=2
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Max Pooling Gradients

* The gradient of the max pooling operation is 1

everywhere a max value was selected, and zero
elsewhere

e This means that implementations not only need
to record the max values in the forward-pass, but
also keep track of the positions of those
maximums for the backward pass




Average Pooling

2x2 average pooling, stride = 2

Local Versus Global Pooling

* The pooling operations on the previous slides are local
* They result in a feature map reducing in spatial size
» Global pooling reduces a feature map to a scalar

e SO atensor of many feature maps would be reduced
to a single feature vector

« Often used near the end of networks to flatten
feature maps into feature vectors that can be fed
into an MLP




Dilated Convolutions

* Sometimes we want to have larger receptive
fields in our networks

 \We can increase the kernel size to achieve
this, but this introduces more weights

* We can downsample/pool the input, but
this decreases spatial resolution

* Or we could ‘pad’ the kernel with zeros
throughout to increase the effective size
without increasing the number of
parameters




