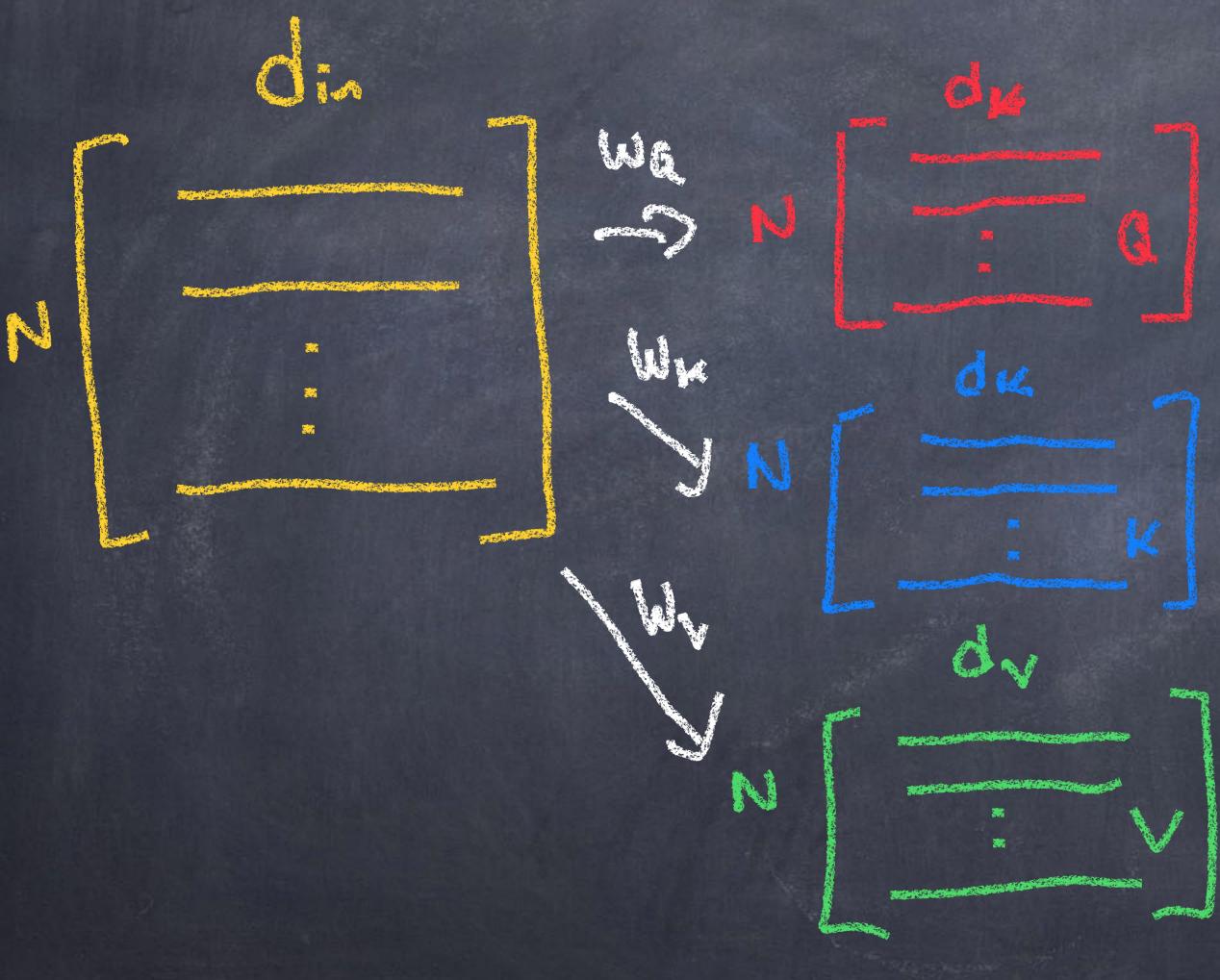
Were Chhis all we heeded?

Context: Processing Long sequences

- Many sequence modeling tasks require long context windows
 - e.g. in a task like document summarization it helps to know everything about the document, not just a paragraph or two...
- Increasing the size of the context window is seen as a major research challenge
 - o The Limitation is a computational one

Existing methods: transformer



Existing methods: transformer

Softmax OK Vdx Vdx

Existing methods: transformer

Softmax OK Vdk

Output is Nxdv

Translaime complexity
15 quadratic in N

Existing methods: Khhs

- Older RNNs (Elman, LSTM, GRU) can in principle handle long sequences given enough compute resource
 - But, they are sequential (and thus slow), and might suffer other compute problems (vanishing gradient, etc) with really large contexts
 - o They scale linearly with N
- Some hints that newer state-space models (s4, s6, Mamba, etc) are able to scale to long sequence tasks efficiently

Can efficient, parallelisable RNNs be created?

o Idea: use multiple processors to efficiently compute

o From a sequence

o Where this an associative operator

Background: parallel scan e.g. cumulative sum

Background: parallel scan e.g. cumulative sum

What about sequences Ice = aexer, + be?

What about sequences Die = ae de 1 + be? Take logs: log oct = at + log(20+bt) at I los ac 0 t + 100 (x o + b t)

What about sequences
$$x = a_{\epsilon} x_{\epsilon-1} + b_{\epsilon}$$
?

Take logs: $\log x_{\epsilon} = a_{\epsilon}^* + \log(x_0 + b_{\epsilon}^*)$
 $a_{\epsilon}^* = \sum_{k=1}^{\infty} \log a_{k}$
 $b_{\epsilon}^* = \sum_{k=1}^{\infty} \log b_{k} - a_{\epsilon}^*$

Both can be computed with $b_{\epsilon}^* = \sum_{k=1}^{\infty} \log b_{k} - a_{\epsilon}^*$

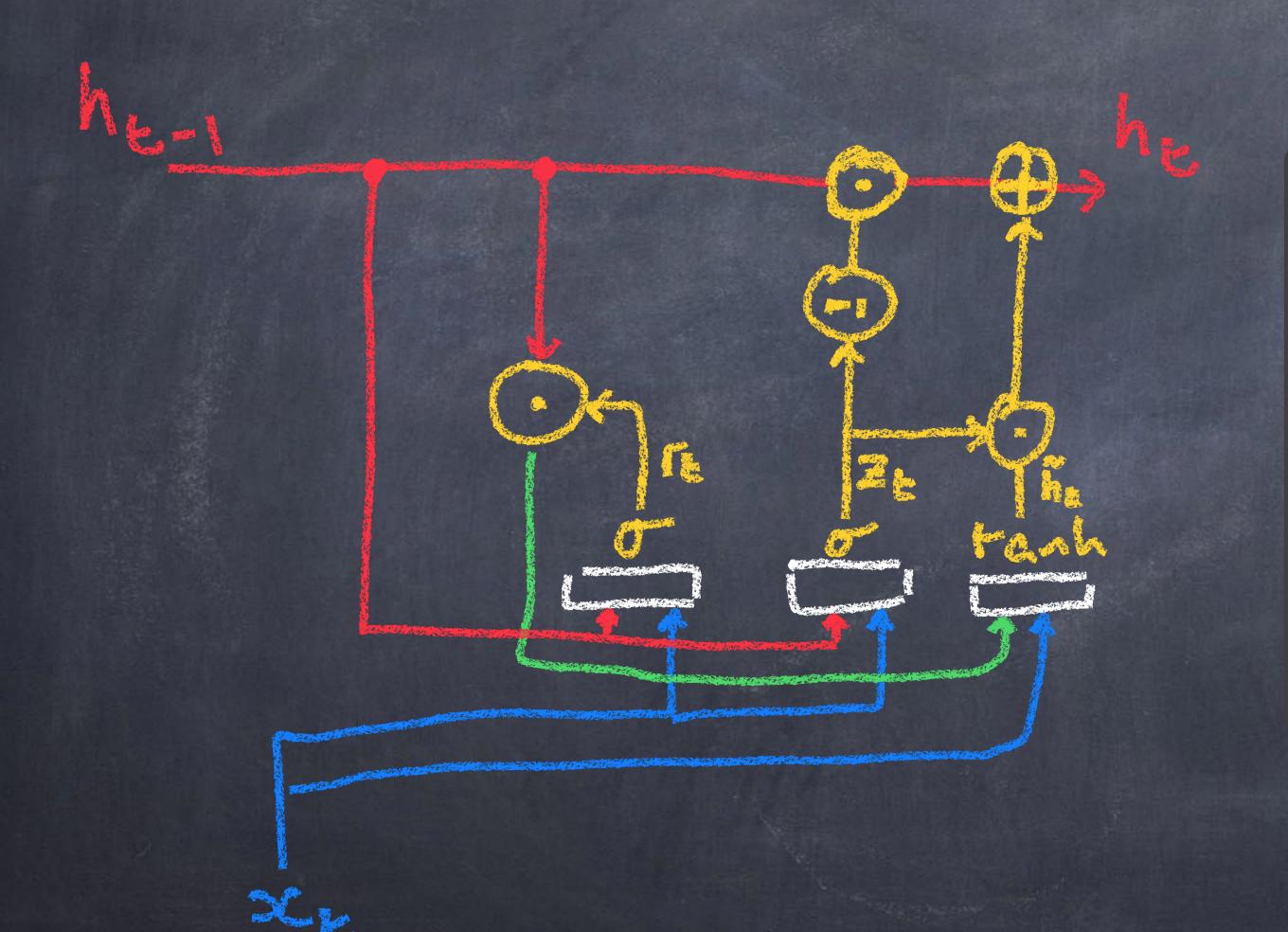
Take $a_{\epsilon}^* = \sum_{k=1}^{\infty} \log a_{k}$
 $a_{\epsilon}^* = \sum_{k=1}^{\infty} \log b_{k} - a_{\epsilon}^*$
 $a_{\epsilon}^* = \sum_{k=1}^{\infty} \log b_{k} - a_{\epsilon}^*$
 $a_{\epsilon}^* + \log(x_0 + b_{\epsilon}^*)$

What about sequences are a early the?

=)
$$x_{E} = e^{x_{E}^{*} + \log(x_{O} + b_{E}^{*})}$$

Note for implementation use log-com-sum-exp trick for numerical stability

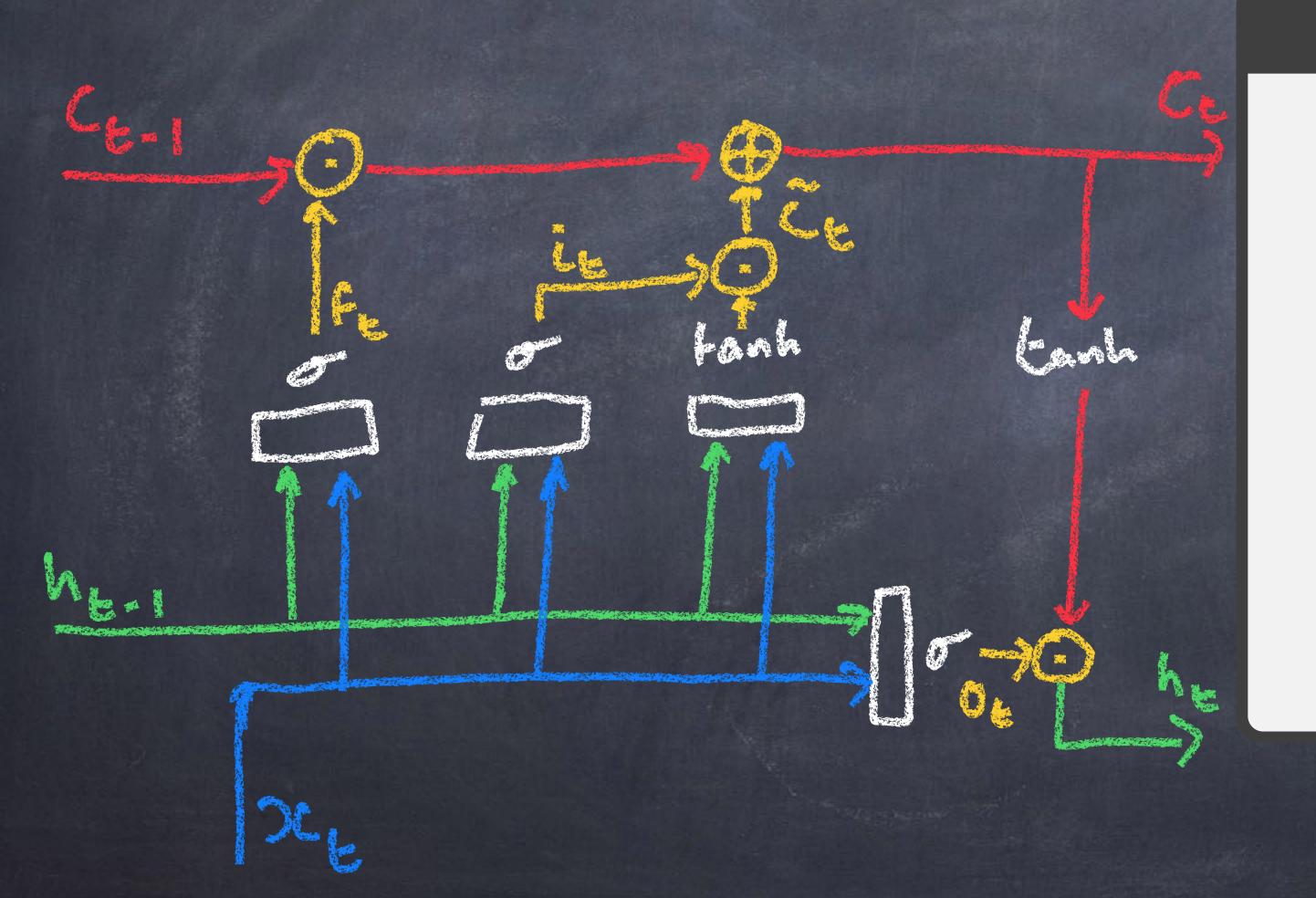
Backstand: Collina:



GRU

$$egin{aligned} m{h}_t &= (\mathbf{1} - m{z}_t) \odot m{h}_{t-1} + m{z}_t \odot ilde{m{h}}_t \ m{z}_t &= \sigma(\operatorname{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \ m{r}_t &= \sigma(\operatorname{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \ ilde{m{h}}_t &= \operatorname{tanh}(\operatorname{Linear}_{d_h}([m{x}_t, m{r}_t \odot m{h}_{t-1}])) \end{aligned}$$

Backaround: Land



LSTM

$$egin{aligned} m{h}_t &= m{o}_t \odot anh(m{c}_t) \ m{o}_t &= \sigma(ext{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \ m{c}_t &= m{f}_t \odot m{c}_{t-1} + m{i}_t \odot m{ ilde{c}}_t \ m{f}_t &= \sigma(ext{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \ m{i}_t &= \sigma(ext{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \ m{ ilde{c}}_t &= anh(ext{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \end{aligned}$$

MELACOCOLOCO

- e Strip back existing RNNs so we can apply parallel scan
 - @ Remove hidden state dependencies on input/forget/update gates
- o Remove constraints on output range
 - (Because by removing hidden state dependencies the vanishing/ exploding gradient issues that resulted should also go)
 - @ Also ensure output is time-independent in scale
 - ø (i.e. stop output exploding/diminishing over time steps)

Making Minimit

Parallel scan: Ve = at 0 Ve-1 + be

GRU state: he = (1-ZE) Ohe-1+ZEOhE

Maleina Minaria

Parallel scan:
$$VE = Q_E \circ V_{E-1} + b_E$$

GRU state: $h_E = (1 - Z_E) \circ h_{E-1} + Z_E \circ h_E$

But: Z_E and h_E are dependent on h_{E-1}
 $Z_E = \sigma \left(\text{linear} \left(C \circ c_E, h_{E-1} \right) \right)$
 $h_E^* = \text{tash} \left(\text{linear} \left(C \circ c_E, h_{E-1} \right) \right)$

Maleina Minaci

Parallel scan:
$$VE = Q_E \circ V_{E-1} + b_E$$

GRU state: $h_E = (1 - Z_E) \circ h_{E-1} + Z_E \circ h_E$

But: Z_E and h_E are dependent on h_{E-1}
 $Z_E = \sigma \left(\lim_{n \to \infty} \left(\frac{2}{3} \alpha_{E_n} , \frac{n}{N+3} \right) \right)$

So remove h_{E-1}
 $h_E = \tanh \left(\lim_{n \to \infty} \left(\frac{2}{3} \alpha_{E_n} , \frac{n}{N+3} \right) \right)$

From the second second

Making Minimi

Parallel scan:
$$VE = a_E \circ V_{E-1} + b_E / C_E$$

GRU state: $h_E = (1 - Z_E) \circ h_{E-1} + Z_E \circ h_E$

But: Z_E and h_E are dependent on h_{E-1}
 $Z_E = \sigma \left(\text{linear}(x_E) \right)$
 $\tilde{h}_E = tanh \left(\text{linear}(x_E) \right)$

Making Minimi

Parallel scan:
$$VE = Q_E \circ V_{E-1} + b_E f$$

GRU state: $h_E = (1 - Z_E) \odot h_{E-1} + Z_E \odot h_E$

But: Z_E and h_E are dependent on h_{E-1}
 $Z_E = \sigma \left(\text{linear}(x_E) \right)$ And remove range $h_E = E_0 \times h \left(\text{linear}(x_E) \right)$ restriction on h_E as not required

Malena Minaria

GRU

$$egin{aligned} m{h}_t &= (\mathbf{1} - m{z}_t) \odot m{h}_{t-1} + m{z}_t \odot \tilde{m{h}}_t \ m{z}_t &= \sigma(\operatorname{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \ m{r}_t &= \sigma(\operatorname{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \ \tilde{m{h}}_t &= \operatorname{tanh}(\operatorname{Linear}_{d_h}([m{x}_t, m{r}_t \odot m{h}_{t-1}])) \end{aligned}$$

minGRU

$$egin{aligned} m{h}_t &= (\mathbf{1} - m{z}_t) \odot m{h}_{t-1} + m{z}_t \odot ilde{m{h}}_t \ m{z}_t &= \sigma(\mathrm{Linear}_{d_h}(m{x}_t)) \ ilde{m{h}}_t &= \mathrm{Linear}_{d_h}(m{x}_t) \end{aligned}$$

Note he scale is time independent because ze and (1-ze) sum to 1

Making Minist

Same process as for GRU

LSTM

$$egin{aligned} m{h}_t &= m{o}_t \odot anh(m{c}_t) \ m{o}_t &= \sigma(ext{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \ m{c}_t &= m{f}_t \odot m{c}_{t-1} + m{i}_t \odot m{ ilde{c}}_t \ m{f}_t &= \sigma(ext{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \ m{i}_t &= \sigma(ext{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \ m{ ilde{c}}_t &= anh(ext{Linear}_{d_h}([m{x}_t, m{h}_{t-1}])) \end{aligned}$$

minLSTM

$$egin{aligned} m{h}_t &= m{f}_t' \odot m{h}_{t-1} + m{i}_t' \odot m{ ilde{h}}_t \ m{f}_t &= \sigma(\mathrm{Linear}_{d_h}(m{x}_t)) \ m{i}_t &= \sigma(\mathrm{Linear}_{d_h}(m{x}_t)) \ m{ ilde{h}}_t &= \mathrm{Linear}_{d_h}(m{x}_t) \ m{f}_t', m{i}_t' \leftarrow m{rac{m{f}_t}{m{f}_t + m{i}_t}}, m{rac{m{i}_t}{m{f}_t + m{i}_t}} \end{aligned}$$

But he scale is time dependent as fe and it are computed independently, so normalize

Were RNNs all we needed? Efficiency

- o significant time improvements
 - "As such, in a setting where minGRU would take a day to finish training for a fixed number of epochs, its traditional counterpart GRU could take over 3 years."
- At the cost of memory (more than originals, but better than Mamba)

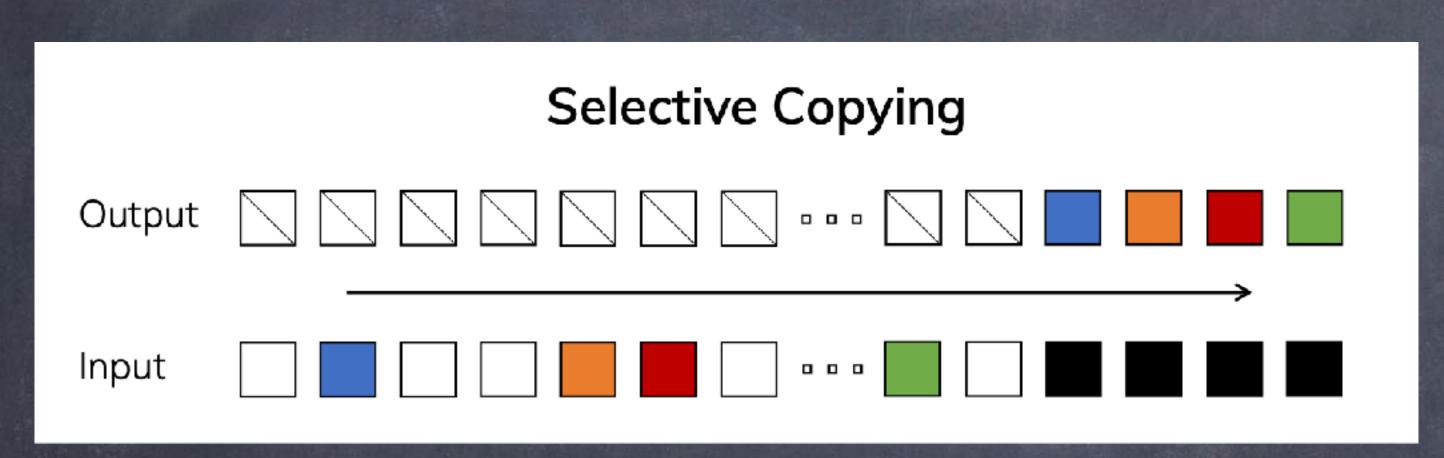
Were RNNs all we needed? Effect of dropping he1

- Worse performance on certain basks by removing time dependent gates
- But can make up for this by stacking (which hasn't really had very much traction in traditional RNNs)

Model	# Layers	Accuracy
	1	37.6 ± 2.0
MinLSTM	2	85.7 ± 5.8
	3	96.0 ± 2.8
MinGRU	1	37.0 ± 2.3
	2	96.8 ± 3.2
	3	99.5 ± 0.2

Table 1: Comparison of the number of layers on the Selective Copying Task (Gu & Dao, 2024).

Were RNNs all we needed? Performance - copying



The Selective Copying task has random spacing in between inputs and requires time-varying models that can selectively remember or ignore inputs depending on their content.

Model	Layer	Accuracy	
H3	Hyena	30.1	
Mamba	Hyena	28.4	
<u>S4</u>	S4	18.3	
H3	S4	57.0	
Mamba	S4	56.4	
<u>S4</u>	S6	97.0	
H3	S 6	99.7	
Mamba	S 6	99.8	
minGRU	minGRU	99.5 ± 0.2	
minLSTM	minLSTM	96.0 ± 2.8	

Table 2: Selective Copy Task. minL-STM, minGRU, and Mamba's S6 (Gu & Dao, 2024) are capable of solving this task. Other methods such as S4, H3, and Hyena at best only partially solve the task.

Were RNNs all we needed? Performance - RL

Dataset	DT	DS4	DAaren	DMamba	minLSTM	minGRU
HalfCheetah-M	42.6	42.5	42.2	42.8	42.7 ± 0.7	43.0 ± 0.4
Hopper-M	68.4	54.2	80.9	83.5	85.0 ± 4.4	79.4 ± 8.2
Walker-M	75.5	78.0	74.4	78.2	72.0 ± 7.5	73.3 ± 3.3
HalfCheetah-M-R	37.0	15.2	37.9	39.6	38.6 ± 1.1	38.5 ± 1.1
Hopper-M-R	85.6	49.6	77.9	82.6	88.5 ± 4.7	90.5 ± 0.9
Walker-M-R	71.2	69.0	71.4	70.9	69.7 ± 10.7	72.8 ± 8.9
HalfCheetah-M-E	88.8	92.7	75.7	91.9	85.4 ± 1.7	86.3 ± 0.5
Hopper-M-E	109.6	110.8	103.9	111.1	110.3 ± 1.6	109.7 ± 2.7
Walker-M-E	109.3	105.7	110.5	108.3	110.3 ± 0.5	110.3 ± 0.4
Average	76.4	68.6	75.0	78.8	78.1	78.2

Table 3: Reinforcement Learning results on the D4RL (Fu et al., 2020) datasets. We report the expert normalized returns (higher is better), following (Fu et al., 2020), averaged across five random seeds. The minimal versions of LSTM and GRU, minLSTM and minGRU outperform Decision S4 (David et al., 2023) and perform comparably with Decision Mamba (Ota, 2024), (Decision) Aaren (Feng et al., 2024) and Decision Transformer (Chen et al., 2021).

Were RNNs all we needed? Performance - language

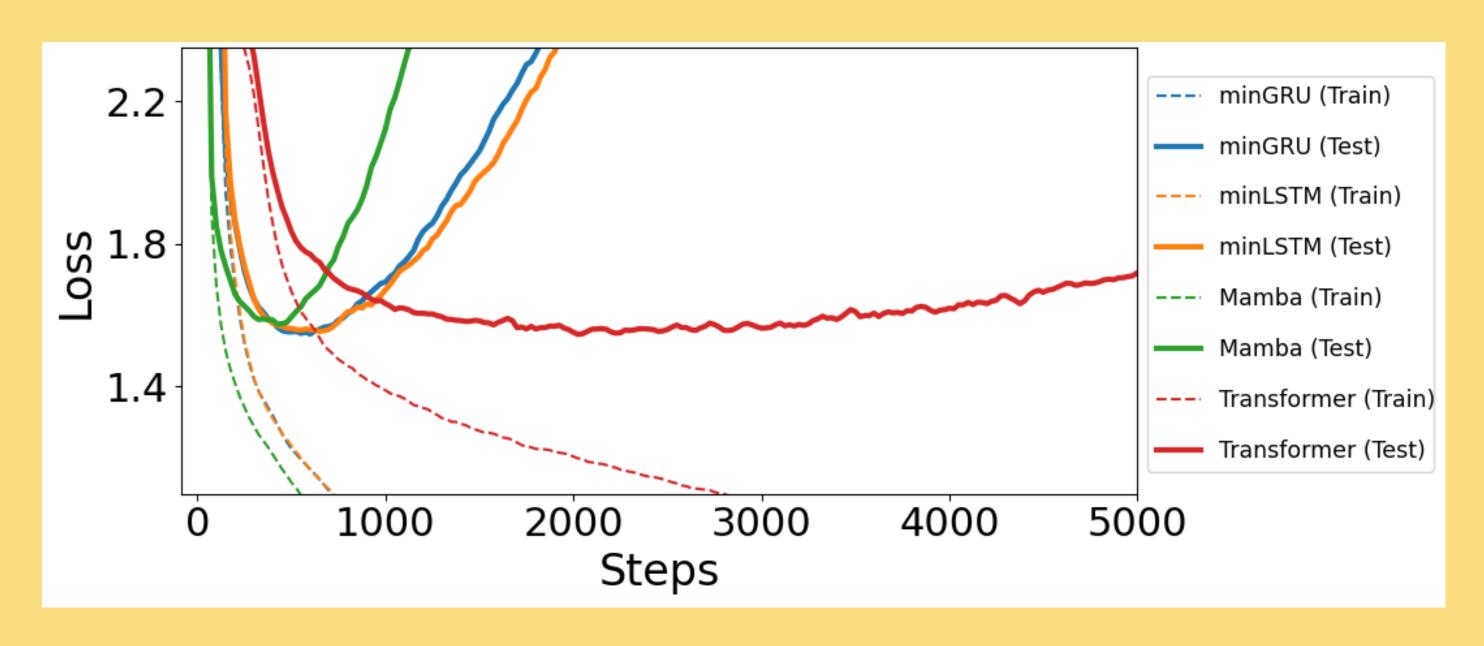


Figure 2: Language Modelling results on the Shakespeare dataset. Minimal versions of decade-old RNNs (LSTMs and GRUs) performed comparably to Mamba and Transformers. Transformers required $\sim 2.5 \times$ more training steps to achieve comparable performance, overfitting eventually.

CONTEDUCIONS

Micalences

Action reviews

https://openreview.net/forum?id=GrmffxGnOR

- o Public comments about similarity to other work
- o Public concern over the title?
- o Public comments asking reviewer to re-evaluate!

o Scores: X, 6, 3, 3

ACCIOL TOULS

https://openreview.net/forum?id=GrmFFxGnOR

- @ Insufficient comparison
- o Limited datasets
- e Lack of depth to literature review
- o "Similarities" to other models (although...)
- o Lack of novelly