
Were RNNs all we needed?



Context: Processing long 
sequences 

Many sequence modeling tasks require long context 
windows 

e.g. in a task like document summarization it helps to 
know everything about the document, not just a 
paragraph or two… 

Increasing the size of the context window is seen as a 
major research challenge 

The limitation is a computational one



Existing methods: transformer
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Existing methods: RNNs
Older RNNs (Elman, LSTM, GRU) can in principle handle 
long sequences given enough compute resource 

But, they are sequential (and thus slow), and might 
suffer other compute problems (vanishing gradient, etc) 
with really large contexts 

They scale linearly with N 

Some hints that newer state-space models (s4, s6, Mamba, 
etc) are able to scale to long sequence tasks efficiently



Can efficient, parallelisable 
RNNs be created?



Background: parallel scan

Idea: use multiple processors to efficiently compute  

From a sequence  

Where   is an associative operator 



Background: parallel scan 
e.g. cumulative sum
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Background: GRU
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By removing the dependence on ht�1 from the candidate hidden state h̃t, the reset gate rt that
would control ht�1 weight is also no longer needed and is removed. Without the dependencies on
previous hidden states, the inputs to the algorithm a1, . . . ,an and b1, . . . , bn are all easily computed
in parallel and can thus be used to compute h1, . . . ,hn efficiently via the parallel scan.

Although there are theoretical concerns about the absence of hidden state dependencies (Merrill
et al., 2024), there is substantial empirical evidence supporting the effectiveness of models that omit
these dependencies, such as xLSTM (Beck et al., 2024) and Mamba (Gu & Dao, 2024). Notably,
in the xLSTM paper, their fully parallelized version (xLSTM[1:0]), which eliminates hidden state
dependencies, performed similarly to — and in some cases, better than — versions that retain these
dependencies (e.g., xLSTM[7:1]). Rather than explicitly modelling dependencies, these models can
learn long-range dependencies by stacking multiple layers.

3.1.2 STEP 2: DROP RANGE RESTRICTION OF CANDIDATE STATES

In GRU’s hidden state recurrence, the proportion carried over from the previous hidden state (1�zt)
and the amount added for the new candidate hidden state (zt) sum to 1. As a result, the scale of
GRU’s hidden state value is time-independent. Instead, the scale of its hidden state depends on that
of its candidate hidden states h̃t. The hyperbolic tangent function (tanh) plays a crucial role in
LSTMs and GRUs, restricting the range of (candidate) hidden states, i.e., h̃t,ht 2 (�1, 1)dh . The
tanh helps stabilize the training and mitigates vanishing gradients that result from applying sigmoid
(�) activations to linear transformations of the hidden state (e.g., zt = �(Lineardh([xt,ht�1]))). In
the previous step, these hidden state dependencies were removed. As such, we can simplify GRU
further by removing the range restriction (tanh) on the (candidate) hidden states as follows:

h̃t = tanh(Lineardh(xt)) ) h̃t = Lineardh(xt)

3.1.3 MINGRU

Combining the two simplification steps results in a minimal version of GRU (minGRU):

GRU

ht = (1� zt)� ht�1 + zt � h̃t

zt = �(Lineardh([xt,ht�1]))

rt = �(Lineardh([xt,ht�1]))

h̃t = tanh(Lineardh([xt, rt � ht�1]))

)

minGRU

ht = (1� zt)� ht�1 + zt � h̃t

zt = �(Lineardh(xt))

h̃t = Lineardh(xt)

The resulting model is significantly more efficient than the original GRU (1) requiring only
O(2dhdx) parameters instead of GRU’s O(3dh(dx + dh)) parameters where dx, dh corresponds
to the sizes of xt and ht respectively. In terms of training, minGRU (2) can be trained in paral-
lel using the parallel scan algorithm, speeding up training significantly. In Section 4.1, we show
that this corresponded to a 175⇥ speedup in training steps for a sequence length of 512 on a T4
GPU. The parameter efficiency gains are also significant. Typically, in RNNs, state expansion is
performed (i.e., dh = ↵dx where ↵ � 1) allowing the models to more readily learn features from
their inputs. minGRU uses approximately 33%, 22%, 17%, or 13% of parameters compared to GRU
when ↵ = 1, 2, 3, or 4 respectively.

3.2 A MINIMAL LSTM: MINLSTM

3.2.1 STEP 1: DROP PREVIOUS STATE DEPENDENCIES FROM GATES

Revisiting LSTMs, we focus on their cell state recurrence which works as follows:
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Background: LSTM
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Figure 1: Training runtime (left), speedup (middle), and memory footprint (right) on a T4 GPU for a
batch size of 64. In the training runtime plot (left), minGRU, minLSTM, and Mamba lines overlap.
These methods are approximately the same in training runtime.

LSTM

ht = ot � tanh(ct)

ot = �(Lineardh([xt,ht�1]))

ct = ft � ct�1 + it � c̃t
ft = �(Lineardh([xt,ht�1]))

it = �(Lineardh([xt,ht�1]))

c̃t = tanh(Lineardh([xt,ht�1]))

)

minLSTM

ht = f 0
t � ht�1 + i0t � h̃t

ft = �(Lineardh(xt))

it = �(Lineardh(xt))

h̃t = Lineardh(xt)

f 0
t , i

0
t  

ft

ft + it
,

it
ft + it

The minimal version (minLSTM) is significantly more efficient (1) requiring only O(3dhdx) param-
eters compared to LSTM’s O(4dh(dx + dh)). Furthermore, minLSTM (2) can be trained in parallel
using the parallel scan algorithm, speeding up training significantly. For example, in Section 4.1,
we found that minLSTM corresponded to a 235⇥ speedup for a sequence of length 512 compared
to LSTM on a T4 GPU. In terms of parameter efficiency, minLSTM uses only 38%, 25%, 19%, or
15% of parameters compared to LSTM when ↵ = 1, 2, 3, or 4 respectively where dh = ↵dx.

4 WERE RNNS ALL WE NEEDED?

In this section, we compare the minimal versions (minLSTMs and minGRUs) with their traditional
counterparts (LSTMs and GRUs) and modern sequence models. Pseudocode, PyTorch implementa-
tion, and detailed information regarding the experiment setup are available in the Appendix.

4.1 MINIMAL LSTMS AND GRUS ARE VERY EFFICIENT

At test time, recurrent sequence models are typically rolled out sequentially, which makes inference
relatively efficient. However, the main bottleneck for traditional RNNs lies in their training, which
requires linear time due to backpropagation through time (BPTT). This computational inefficiency
contributed to the eventual deprecation of many earlier RNN-based models. Recent advances, how-
ever, have sparked renewed interest in recurrent sequence models, driven by new architectures that
enable parallelized training (Gu et al., 2021).

In this section, we compare the resource requirements for training traditional RNNs (LSTM and
GRU), their simplified counterparts (minLSTM and minGRU), and a recent state-of-the-art sequence
model, specifically Mamba (Gu & Dao, 2024), which has gained significant popularity in recent
work.

For our experiments, we use a batch size of 64 and vary the sequence length. We measure both the
total runtime and memory complexity involved in performing a forward pass, computing the loss,
and performing backpropagation to compute gradients. To ensure a fair and direct comparison, all
models were tested with the same number of layers.

6



Methodology 
Strip back existing RNNs so we can apply parallel scan 

Remove hidden state dependencies on input/forget/update gates 

Remove constraints on output range  

(Because by removing hidden state dependencies the vanishing/
exploding gradient issues that resulted should also go) 

Also ensure output is time-independent in scale  

(i.e. stop output exploding/diminishing over time steps)
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By removing the dependence on ht�1 from the candidate hidden state h̃t, the reset gate rt that
would control ht�1 weight is also no longer needed and is removed. Without the dependencies on
previous hidden states, the inputs to the algorithm a1, . . . ,an and b1, . . . , bn are all easily computed
in parallel and can thus be used to compute h1, . . . ,hn efficiently via the parallel scan.

Although there are theoretical concerns about the absence of hidden state dependencies (Merrill
et al., 2024), there is substantial empirical evidence supporting the effectiveness of models that omit
these dependencies, such as xLSTM (Beck et al., 2024) and Mamba (Gu & Dao, 2024). Notably,
in the xLSTM paper, their fully parallelized version (xLSTM[1:0]), which eliminates hidden state
dependencies, performed similarly to — and in some cases, better than — versions that retain these
dependencies (e.g., xLSTM[7:1]). Rather than explicitly modelling dependencies, these models can
learn long-range dependencies by stacking multiple layers.

3.1.2 STEP 2: DROP RANGE RESTRICTION OF CANDIDATE STATES

In GRU’s hidden state recurrence, the proportion carried over from the previous hidden state (1�zt)
and the amount added for the new candidate hidden state (zt) sum to 1. As a result, the scale of
GRU’s hidden state value is time-independent. Instead, the scale of its hidden state depends on that
of its candidate hidden states h̃t. The hyperbolic tangent function (tanh) plays a crucial role in
LSTMs and GRUs, restricting the range of (candidate) hidden states, i.e., h̃t,ht 2 (�1, 1)dh . The
tanh helps stabilize the training and mitigates vanishing gradients that result from applying sigmoid
(�) activations to linear transformations of the hidden state (e.g., zt = �(Lineardh([xt,ht�1]))). In
the previous step, these hidden state dependencies were removed. As such, we can simplify GRU
further by removing the range restriction (tanh) on the (candidate) hidden states as follows:

h̃t = tanh(Lineardh(xt)) ) h̃t = Lineardh(xt)

3.1.3 MINGRU

Combining the two simplification steps results in a minimal version of GRU (minGRU):

GRU

ht = (1� zt)� ht�1 + zt � h̃t

zt = �(Lineardh([xt,ht�1]))

rt = �(Lineardh([xt,ht�1]))

h̃t = tanh(Lineardh([xt, rt � ht�1]))

)

minGRU

ht = (1� zt)� ht�1 + zt � h̃t

zt = �(Lineardh(xt))

h̃t = Lineardh(xt)

The resulting model is significantly more efficient than the original GRU (1) requiring only
O(2dhdx) parameters instead of GRU’s O(3dh(dx + dh)) parameters where dx, dh corresponds
to the sizes of xt and ht respectively. In terms of training, minGRU (2) can be trained in paral-
lel using the parallel scan algorithm, speeding up training significantly. In Section 4.1, we show
that this corresponded to a 175⇥ speedup in training steps for a sequence length of 512 on a T4
GPU. The parameter efficiency gains are also significant. Typically, in RNNs, state expansion is
performed (i.e., dh = ↵dx where ↵ � 1) allowing the models to more readily learn features from
their inputs. minGRU uses approximately 33%, 22%, 17%, or 13% of parameters compared to GRU
when ↵ = 1, 2, 3, or 4 respectively.

3.2 A MINIMAL LSTM: MINLSTM

3.2.1 STEP 1: DROP PREVIOUS STATE DEPENDENCIES FROM GATES

Revisiting LSTMs, we focus on their cell state recurrence which works as follows:
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zt and (1-zt) sum to 1



Making minLSTM
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Figure 1: Training runtime (left), speedup (middle), and memory footprint (right) on a T4 GPU for a
batch size of 64. In the training runtime plot (left), minGRU, minLSTM, and Mamba lines overlap.
These methods are approximately the same in training runtime.

LSTM

ht = ot � tanh(ct)

ot = �(Lineardh([xt,ht�1]))

ct = ft � ct�1 + it � c̃t
ft = �(Lineardh([xt,ht�1]))

it = �(Lineardh([xt,ht�1]))

c̃t = tanh(Lineardh([xt,ht�1]))

)

minLSTM

ht = f 0
t � ht�1 + i0t � h̃t

ft = �(Lineardh(xt))

it = �(Lineardh(xt))

h̃t = Lineardh(xt)

f 0
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The minimal version (minLSTM) is significantly more efficient (1) requiring only O(3dhdx) param-
eters compared to LSTM’s O(4dh(dx + dh)). Furthermore, minLSTM (2) can be trained in parallel
using the parallel scan algorithm, speeding up training significantly. For example, in Section 4.1,
we found that minLSTM corresponded to a 235⇥ speedup for a sequence of length 512 compared
to LSTM on a T4 GPU. In terms of parameter efficiency, minLSTM uses only 38%, 25%, 19%, or
15% of parameters compared to LSTM when ↵ = 1, 2, 3, or 4 respectively where dh = ↵dx.

4 WERE RNNS ALL WE NEEDED?

In this section, we compare the minimal versions (minLSTMs and minGRUs) with their traditional
counterparts (LSTMs and GRUs) and modern sequence models. Pseudocode, PyTorch implementa-
tion, and detailed information regarding the experiment setup are available in the Appendix.

4.1 MINIMAL LSTMS AND GRUS ARE VERY EFFICIENT

At test time, recurrent sequence models are typically rolled out sequentially, which makes inference
relatively efficient. However, the main bottleneck for traditional RNNs lies in their training, which
requires linear time due to backpropagation through time (BPTT). This computational inefficiency
contributed to the eventual deprecation of many earlier RNN-based models. Recent advances, how-
ever, have sparked renewed interest in recurrent sequence models, driven by new architectures that
enable parallelized training (Gu et al., 2021).

In this section, we compare the resource requirements for training traditional RNNs (LSTM and
GRU), their simplified counterparts (minLSTM and minGRU), and a recent state-of-the-art sequence
model, specifically Mamba (Gu & Dao, 2024), which has gained significant popularity in recent
work.

For our experiments, we use a batch size of 64 and vary the sequence length. We measure both the
total runtime and memory complexity involved in performing a forward pass, computing the loss,
and performing backpropagation to compute gradients. To ensure a fair and direct comparison, all
models were tested with the same number of layers.
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Were RNNs all we needed? 
Efficiency

Significant time improvements 

“As such, in a setting where minGRU would take a 
day to finish training for a fixed number of 
epochs, its traditional counterpart GRU could take 
over 3 years.” 

At the cost of memory (more than originals, but 
better than Mamba)



Were RNNs all we needed? 
Effect of dropping ht-1

Worse performance on certain 
tasks by removing time 
dependent gates 

But can make up for this by 
stacking (which hasn’t really had 
very much traction in traditional 
RNNs)
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Runtime. In terms of runtime (see Figure 1 (left)), the simplified versions of LSTM and GRU
(minLSTM and minGRU) Mamba achieve similar runtimes. Averaging over 100 runs, the runtime
for sequence lengths of 512 for minLSTM, minGRU, and Mamba were 2.97, 2.72, and 2.71 mil-
liseconds respectively. For a sequence with length 4096, the runtime were 3.41, 3.25, and 3.15
respectively. In contrast, the traditional RNN counterparts (LSTMs and GRUs) required a runtime
that scaled linearly with respect to sequence length. For a sequence length of 512, minGRUs and
minLSTMs were 175⇥ and 235⇥ faster per training step (see Figure 1 (middle)) than GRUs and
LSTMs on a T4 GPU. The improvement is even more significant as sequences grow in length with
minGRUs and minLSTMs being 1324⇥ and 1361⇥ faster for a sequence length of 4096. As such,
in a setting where minGRU would take a day to finish training for a fixed number of epochs, its
traditional counterpart GRU could take over 3 years.

Memory. By leveraging a parallel scan algorithm to compute the outputs in parallel efficiently,
minGRU, minLSTM, and Mamba create a larger computational graph, thus needing more memory
compared to traditional RNNs (see Figure 1 (right)). The minimal variants (minGRU and minL-
STM) use ⇠ 88% more memory compared to their traditional counterpart. Mamba uses 56% more
memory compared to minGRU. In practice, however, runtime is the bottleneck when training RNNs.

Effect of removing ht�1. The original LSTM and GRU compute their various gates using their
inputs xt and previous hidden states ht�1. These models leverage their time-dependent gates to
learn complex functions. However, minLSTM and minGRU’s training efficiencies are achieved by
dropping their gates’ dependencies on the previous hidden states ht�1. As a result, minLSTM and
minGRU’s gates are dependent only on their inputs xt, resulting in a simpler recurrent module. As
such, the gates of a model consisting of a single layer of minLSTM or minGRU are time-independent
due to being conditioned on time-independent inputs x(1)

1:n.

Model # Layers Accuracy

MinLSTM
1 37.6 ± 2.0
2 85.7 ± 5.8
3 96.0 ± 2.8

MinGRU
1 37.0 ± 2.3
2 96.8 ± 3.2
3 99.5 ± 0.2

Table 1: Comparison of the number of
layers on the Selective Copying Task (Gu
& Dao, 2024).

However, in deep learning, models are constructed by
stacking modules. Although the inputs to the first layer
x(1)
1:n is time-independent, its outputs h(1)

1:n are time-
dependent and are used as the inputs to the second layer,
i.e., x(2)

1:n  h(1)
1:n. As such, beginning from the second

layer onwards, minLSTM and minGRU’s gates will also
be time-dependent, resulting in the modelling of more
complex functions. In Table 1, we compare the perfor-
mance of the models with varying numbers of layers on
the Selective Copying Task from the Mamba paper (Gu
& Dao, 2024). We can immediately see the impact of
the time dependencies: increasing the number of layers
to 2 or more drastically increases the model’s perfor-
mance.

Training Stability. Another effect of the number of layers is increased stability with decreased
variance in the accuracy as the number of layers increases (see Table 1). Furthermore, although
minLSTM and minGRU both solve the Selective Copying task, we can see that minGRU is an em-
pirically more stable method than minLSTM, solving the task with more consistency and lower
variance. minLSTM discards old information and adds new information, controlling the ratio with
two sets of parameters (forget and input gate). During training, the two sets of parameters are tuned
in different directions, making the ratio harder to control and optimize. In contrast, minGRU’s dis-
carding and adding of information is controlled by a single set of parameters (update gate), making
it easier to optimize.

4.2 MINIMAL RNNS PERFORM SURPRISINGLY WELL

In the previous section, we highlighted the substantial efficiency gains achieved by simplifying tra-
ditional RNNs. In this section, we focus on the empirical performance of these minimal versions
of LSTMs and GRUs, comparing them to several well-known sequence models. It is important to
note that the primary goal of our work is not to attain the best performance on specific tasks but to
demonstrate that simplifying traditional RNN architectures can yield competitive results, compara-
ble to those of modern, state-of-the-art sequence models.
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Dataset DT DS4 DAaren DMamba minLSTM minGRU
HalfCheetah-M 42.6 42.5 42.2 42.8 42.7 ± 0.7 43.0 ± 0.4

Hopper-M 68.4 54.2 80.9 83.5 85.0 ± 4.4 79.4 ± 8.2
Walker-M 75.5 78.0 74.4 78.2 72.0 ± 7.5 73.3 ± 3.3

HalfCheetah-M-R 37.0 15.2 37.9 39.6 38.6 ± 1.1 38.5 ± 1.1
Hopper-M-R 85.6 49.6 77.9 82.6 88.5 ± 4.7 90.5 ± 0.9
Walker-M-R 71.2 69.0 71.4 70.9 69.7 ± 10.7 72.8 ± 8.9

HalfCheetah-M-E 88.8 92.7 75.7 91.9 85.4 ± 1.7 86.3 ± 0.5
Hopper-M-E 109.6 110.8 103.9 111.1 110.3 ± 1.6 109.7 ± 2.7
Walker-M-E 109.3 105.7 110.5 108.3 110.3 ± 0.5 110.3 ± 0.4

Average 76.4 68.6 75.0 78.8 78.1 78.2

Table 3: Reinforcement Learning results on the D4RL (Fu et al., 2020) datasets. We report the expert
normalized returns (higher is better), following (Fu et al., 2020), averaged across five random seeds.
The minimal versions of LSTM and GRU, minLSTM and minGRU outperform Decision S4 (David
et al., 2023) and perform comparably with Decision Mamba (Ota, 2024), (Decision) Aaren (Feng
et al., 2024) and Decision Transformer (Chen et al., 2021).

Model Layer Accuracy
H3 Hyena 30.1

Mamba Hyena 28.4
S4 S4 18.3
H3 S4 57.0

Mamba S4 56.4
S4 S6 97.0
H3 S6 99.7

Mamba S6 99.8
minGRU minGRU 99.5 ± 0.2

minLSTM minLSTM 96.0 ± 2.8

Table 2: Selective Copy Task. minL-
STM, minGRU, and Mamba’s S6 (Gu &
Dao, 2024) are capable of solving this task.
Other methods such as S4, H3, and Hyena
at best only partially solve the task.

Selective Copy. We begin by considering the Selec-
tive Copying task, originally introduced in the influ-
ential Mamba paper (Gu & Dao, 2024). This task
served as a key benchmark that demonstrated the im-
provements made by Mamba’s state-space model, S6,
over previous state-of-the-art models such as S4 (Gu
et al., 2021) and Hyena (Poli et al., 2023). The task
requires models to perform content-aware reasoning,
where they must selectively memorize relevant tokens
while filtering out irrelevant ones.

In Table 2, we compare the simplified versions of
LSTMs and GRUs (minLSTM and minGRU) with sev-
eral well-known recurrent sequence models that can
be trained in parallel, including S4 (Gu et al., 2021),
H3 (Fu et al., 2023), Hyena (Poli et al., 2023), and
Mamba (S6) (Gu & Dao, 2024). The results for these
baselines are directly quoted from the Mamba paper.
Among these, only Mamba’s S6 model succeeds in
solving the task.

Both minGRU and minLSTM are able to solve the Se-
lective Copying task as well, achieving performance comparable to S6 and surpassing all other
baseline models. The success of these minimal versions highlights the effectiveness of LSTMs and
GRUs, which utilize content-aware gating mechanisms. This enables the simplified architectures to
solve the task—something that many other modern sequence models fail to achieve.

Reinforcement Learning. Next, we consider the MuJoCo locomotion tasks from the D4RL bench-
mark (Fu et al., 2020). Specifically, we consider the three environments: HalfCheetah, Hopper, and
Walker. For each environment, the models are trained on three datasets of varying data quality:
Medium (M), Medium-Replay (M-R), and Medium-Expert (M-E).

In Table 3, we compare minLSTM and minGRU with various Decision Transformer variants, in-
cluding the original Decision Transformer (DT) (Chen et al., 2021), Decision S4 (DS4) (David
et al., 2023), Decision Mamba (Ota, 2024), and (Decision) Aaren (Feng et al., 2024). The base-
line results are retrieved from the Decision Mamba and Aaren papers. minLSTM and minGRU
outperform Decision S4 and achieve performance competitive with Decision Transformer, Aaren,
and Mamba. Unlike other recurrent methods, Decision S4 is a model whose recurrence transitions
are not input-aware, affecting their performance. In terms of average score across the 3 ⇥ 3 = 9
datasets, minLSTM and minGRU outperform all the baselines except for Decision Mamba where
the difference is marginal.
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Dataset DT DS4 DAaren DMamba minLSTM minGRU
HalfCheetah-M 42.6 42.5 42.2 42.8 42.7 ± 0.7 43.0 ± 0.4

Hopper-M 68.4 54.2 80.9 83.5 85.0 ± 4.4 79.4 ± 8.2
Walker-M 75.5 78.0 74.4 78.2 72.0 ± 7.5 73.3 ± 3.3

HalfCheetah-M-R 37.0 15.2 37.9 39.6 38.6 ± 1.1 38.5 ± 1.1
Hopper-M-R 85.6 49.6 77.9 82.6 88.5 ± 4.7 90.5 ± 0.9
Walker-M-R 71.2 69.0 71.4 70.9 69.7 ± 10.7 72.8 ± 8.9

HalfCheetah-M-E 88.8 92.7 75.7 91.9 85.4 ± 1.7 86.3 ± 0.5
Hopper-M-E 109.6 110.8 103.9 111.1 110.3 ± 1.6 109.7 ± 2.7
Walker-M-E 109.3 105.7 110.5 108.3 110.3 ± 0.5 110.3 ± 0.4

Average 76.4 68.6 75.0 78.8 78.1 78.2

Table 3: Reinforcement Learning results on the D4RL (Fu et al., 2020) datasets. We report the expert
normalized returns (higher is better), following (Fu et al., 2020), averaged across five random seeds.
The minimal versions of LSTM and GRU, minLSTM and minGRU outperform Decision S4 (David
et al., 2023) and perform comparably with Decision Mamba (Ota, 2024), (Decision) Aaren (Feng
et al., 2024) and Decision Transformer (Chen et al., 2021).

Model Layer Accuracy
H3 Hyena 30.1

Mamba Hyena 28.4
S4 S4 18.3
H3 S4 57.0

Mamba S4 56.4
S4 S6 97.0
H3 S6 99.7

Mamba S6 99.8
minGRU minGRU 99.5 ± 0.2

minLSTM minLSTM 96.0 ± 2.8

Table 2: Selective Copy Task. minL-
STM, minGRU, and Mamba’s S6 (Gu &
Dao, 2024) are capable of solving this task.
Other methods such as S4, H3, and Hyena
at best only partially solve the task.

Selective Copy. We begin by considering the Selec-
tive Copying task, originally introduced in the influ-
ential Mamba paper (Gu & Dao, 2024). This task
served as a key benchmark that demonstrated the im-
provements made by Mamba’s state-space model, S6,
over previous state-of-the-art models such as S4 (Gu
et al., 2021) and Hyena (Poli et al., 2023). The task
requires models to perform content-aware reasoning,
where they must selectively memorize relevant tokens
while filtering out irrelevant ones.

In Table 2, we compare the simplified versions of
LSTMs and GRUs (minLSTM and minGRU) with sev-
eral well-known recurrent sequence models that can
be trained in parallel, including S4 (Gu et al., 2021),
H3 (Fu et al., 2023), Hyena (Poli et al., 2023), and
Mamba (S6) (Gu & Dao, 2024). The results for these
baselines are directly quoted from the Mamba paper.
Among these, only Mamba’s S6 model succeeds in
solving the task.

Both minGRU and minLSTM are able to solve the Se-
lective Copying task as well, achieving performance comparable to S6 and surpassing all other
baseline models. The success of these minimal versions highlights the effectiveness of LSTMs and
GRUs, which utilize content-aware gating mechanisms. This enables the simplified architectures to
solve the task—something that many other modern sequence models fail to achieve.

Reinforcement Learning. Next, we consider the MuJoCo locomotion tasks from the D4RL bench-
mark (Fu et al., 2020). Specifically, we consider the three environments: HalfCheetah, Hopper, and
Walker. For each environment, the models are trained on three datasets of varying data quality:
Medium (M), Medium-Replay (M-R), and Medium-Expert (M-E).

In Table 3, we compare minLSTM and minGRU with various Decision Transformer variants, in-
cluding the original Decision Transformer (DT) (Chen et al., 2021), Decision S4 (DS4) (David
et al., 2023), Decision Mamba (Ota, 2024), and (Decision) Aaren (Feng et al., 2024). The base-
line results are retrieved from the Decision Mamba and Aaren papers. minLSTM and minGRU
outperform Decision S4 and achieve performance competitive with Decision Transformer, Aaren,
and Mamba. Unlike other recurrent methods, Decision S4 is a model whose recurrence transitions
are not input-aware, affecting their performance. In terms of average score across the 3 ⇥ 3 = 9
datasets, minLSTM and minGRU outperform all the baselines except for Decision Mamba where
the difference is marginal.
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Figure 2: Language Modelling results on the Shakespeare dataset. Minimal versions of decade-
old RNNs (LSTMs and GRUs) performed comparably to Mamba and Transformers. Transformers
required ⇠ 2.5⇥ more training steps to achieve comparable performance, overfitting eventually.

Language Modelling. Finally, we consider a language modelling task. In this setting, we train
a character-level GPT on the works of Shakespeare using the nanoGPT (Karpathy, 2022) frame-
work. In Figure 2, we plot the learning curves with a cross-entropy loss comparing the proposed
minimal LSTM and GRU (minLSTM and minGRU) with Mamba and Transformers. We found that
minGRU, minLSTM, Mamba, and Transformers achieved comparable test losses of 1.548, 1.555,
1.575, and 1.547 respectively. Mamba performed slightly worse than the other models but trained
faster, particularly in the early stages, achieving its best performance at 400 steps while minGRU
and minLSTM continued training until 575 and 625 steps respectively. In contrast, Transform-
ers trained significantly slower, requiring 2000 steps (⇠ 2.5⇥) more training steps than minGRU
to achieve comparable performance, making it significantly slower and more resource-intensive to
train (quadratic complexity compared to minGRU, minLSTM, and Mamba’s linear complexity).

5 RELATED WORK

In this section, we briefly discuss the similarities and differences between recently proposed effi-
cient recurrent sequence models and our simplified versions of traditional RNNs, minLSTM and
minGRU. An extended version of this section is included in the Appendix. For a more comprehen-
sive overview of the resurgence of efficient recurrent sequence models, we refer the reader to recent
survey works (Tiezzi et al., 2024a;b). Roughly speaking, recent recurrent sequence models have
been developed in three directions:

(Deep) State-Space Models (SSMs). Building on continuous-time linear systems, Gu et al. (2021)
introduced S4, a state-space model that can be unrolled like an RNN during inference and trained
similarly to a convolutional neural network. S4’s success paved the way for numerous subsequent
developments in the field (Gu et al., 2022; Gupta et al., 2022; Hasani et al., 2023; Smith et al., 2023)
and their applications across various domains such as language processing (Mehta et al., 2023) and
audio analysis (Goel et al., 2022). More recently, Mamba emerged as a significant breakthrough in
SSMs, surpassing previous models and attracting considerable attention. One of the key innovations
in Mamba was the introduction of S6, a state-space model with input-dependent transition matrices,
contrasting with earlier models that used input-independent transition matrices. The success of
Mamba and other state-space models has led to the publication of several comprehensive surveys on
the topic (Wang et al., 2024; Patro & Agneeswaran, 2024; Qu et al., 2024).

Recurrent Versions of Attention. Another popular direction is that of attention, specifically related
to linear attention (Katharopoulos et al., 2020). For example, Sun et al. (2023) and Qin et al. (2023)
introduced linear attention models that use an input-independent gating mechanism (decay factor).
In contrast, Katsch (2023) and Yang et al. (2024) proposed linear attention variants that use input-
dependent gating. Recently, Feng et al. (2024) showed that softmax attention can also be viewed as
an RNN and proposed a recurrent model based on their RNN formulation.

Parallelizable RNNs. Lastly, several papers have approached the problem by revisiting traditional
RNNs. Bradbury et al. (2017) modified classical gated RNNs to leverage convolutional layers for
efficiency, applying them temporally. Martin & Cundy (2018) showed that RNNs with linear depen-
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