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Learning how to pool sets of vectors

• Consider a system for answering 
questions based on an image


• e.g. You want to ask how many 
red objects are in the scene to 
the right


• There are multiple objects in the 
scene and no canonical ordering 
(they are a set); if each object was 
represented by a vector how 
could we filter that set and reduce 
it to a single vector?

Motivation: Learning how to pool sets of vectors

Consider a system for answering
questions based on an image

e.g. You want to ask how
many red objects are in the
scene to the right

There are multiple objects in the
scene and no canonical ordering
(they are a set); if each object
was represented by a vector how
could we filter that set and
reduce it to a single vector?
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Pooling sets of vectors
Permutation invariance is hard to learn 

• Problem: Want to learn a function to turn sets (of vectors) into a single vector.


• Function clearly needs to be permutation invariant


• MLPs really struggle with learning symmetries in this scenario - for a set of 
cardinality n there are n! possible combinations of input that should have the 
same output


• The problem arises from discontinuities


• We still want to learn the function rather than predefine - weighted average, min, 
max, … 
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Featurewise Sort Pooling
FSPool
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Featurewise Sort Pooling
FSPool

• Solution: sort vectors feature-wise (with a differentiable sort) & take dot-
product with a set of learned weights


• For each feature, across the set of vectors, the dot-product is computing a 
weighted average


• Weights of [1,0,0…] selects min; [0,0…,1] is max; [1,…,1] is the sum

W
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Variable sized sets
Piecewise linear approximations

• Problem: Previously described method requires a weight per feature per 
vector; what if the number of vectors can vary?


• Solution: Continuous relaxation - use a parametric piecewise-linear function 
(a calibrator function) for each feature to estimate the weight for each of the 
vectors

FSP���: L������� S�� R��������������
���� F���������� S��� P������
Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

FSP���: L������� S�� R��������������
���� F���������� S��� P������
Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Predicting sets with MLPs or RNNs

results in discontinuities due to
the responsibility problem.

To pool a set into a vector,

sort each feature independently
to learn about their distribution.

• Sets are unordered, but MLP and RNN outputs are ordered.
�Discontinuities from responsibility problem.

• In a normal set auto-encoder, each output is responsible for a set element.

Encoder M
LP

(-�, -�)
( �, -�)
( �, �)
(-�, �)

(-�, �)
( �, �)
( �, -�)
(-�, -�)

•What happens when we auto-encode a rotating square?

(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

The responsibility problem

• (a) and (b) are the same set.
� (a) and (b) encode to the same vector.
� (a) and (b) have the same MLP output.

• (a) is turned into (b) by rotating ���.
�Rotation starts and ends with the same set.
�MLP outputs can’t just follow the ��� rotation!
� There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

• Smooth change of set requires discontinuous change of MLP outputs.
•Neural networks don’t like learning discontinuities.
•Present in every dataset where two points can be smoothly exchanged like this.

FSPool

•Pooling (set-to-vector) is used in lots of set tasks, but we want a learnable, fast,
permutation-invariant alternative to sum and max.
•Numerical sorting is invariant, so let’s use that! To handle variable-size sets,
we can use “continuous” weights.

Step �:
Sort each feature across the elements of the set.

( )Input Sorted ( )Input Sorted

Step �:
Define continuous weights with piecewise linear functions. Evaluate at four po-
sitions for set of size four, three positions for set of size three, and so on.

f([0, 1
3 ,

2
3 , 1]) Weights f([0, 1

2 , 1]) Weights

Step �:
Dot product to pool into single feature vector.

·
·
·

Sorted OutputWeights
·
·
·

Sorted OutputWeights

FSUnpool

• To avoid the responsibility problem, we can make the auto-encoder
permutation-equivariant. Rotating the square should rotate the outputs too.
• Store the permutation of the sort in FSPool, then invert permutation to restore
the same order as the input =) permutation-equivariant.
• FSUnpool (vector-to-set): “Unpool” by doing Step � in reverse, then “unsort” by
doing Step � in reverse (invert permutation).

Auto-encoding sets

Rotating polygons
Eval: Chamfer loss
FSPool & FSUnpool �.��� �.��� �.��� �.���
MLP � Chamfer loss �.��� �.��� �.��� �.���
MLP � Hungarian loss �.��� �.��� �.��� �.���
Random ��.��� ��.��� �.��� �.���

Denoising auto-encoder for di�erent noise levels

Encoding sets

MNIST set classification � epoch of training �� epochs of training
Weights from auto-encoder: Frozen Unfrozen Random init Frozen Unfrozen Random init
FSPool ��.��±�.� ��.��±�.� ��.��±�.� ��.��± �.� ��.��±�.� ��.��±�.�

Sum ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.�

Mean ��.��±�.� ��.��±��.� ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.�

Max ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.�

CLEVR Epochs to reach accuracy Time for
Accuracy ��.��� ��.��� ��.��� ��� epochs

FSPool ��.���±�.�� ���± � ���±�� ���±�� �.� h
RN ��.���±�.�� ���± � ���±�� *���±�� ��.� h
Janossy ��.���±�.�� – – – ��.� h
Sum ��.���±�.�� ���±�� ���±�� ���±�� �.� h
Mean ��.���±�.�� ���± � ���±�� ���±�� �.� h
Max ��.���±�.�� – – – �.� h

•Replace sum or max with FSPool for
consistent improvements.
•Also improves Relation Networks
and a top graph classifier.
• FSUnpool avoids the responsibility
problem, but only in auto-encoders.
� See Deep Set Prediction Networks
poster at this workshop for gen-
eral solution.

Code available at
https://github.com/Cyanogenoid/fspool
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Experimental results
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Predicting sets with MLPs or RNNs

results in discontinuities due to
the responsibility problem.

To pool a set into a vector,

sort each feature independently
to learn about their distribution.

• Sets are unordered, but MLP and RNN outputs are ordered.
�Discontinuities from responsibility problem.

• In a normal set auto-encoder, each output is responsible for a set element.

Encoder M
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(-�, �)
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( �, �)
( �, -�)
(-�, -�)

•What happens when we auto-encode a rotating square?

(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

The responsibility problem

• (a) and (b) are the same set.
� (a) and (b) encode to the same vector.
� (a) and (b) have the same MLP output.

• (a) is turned into (b) by rotating ���.
�Rotation starts and ends with the same set.
�MLP outputs can’t just follow the ��� rotation!
� There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

• Smooth change of set requires discontinuous change of MLP outputs.
•Neural networks don’t like learning discontinuities.
•Present in every dataset where two points can be smoothly exchanged like this.

FSPool

•Pooling (set-to-vector) is used in lots of set tasks, but we want a learnable, fast,
permutation-invariant alternative to sum and max.
•Numerical sorting is invariant, so let’s use that! To handle variable-size sets,
we can use “continuous” weights.

Step �:
Sort each feature across the elements of the set.

( )Input Sorted ( )Input Sorted

Step �:
Define continuous weights with piecewise linear functions. Evaluate at four po-
sitions for set of size four, three positions for set of size three, and so on.

f([0, 1
3 ,

2
3 , 1]) Weights f([0, 1

2 , 1]) Weights

Step �:
Dot product to pool into single feature vector.

·
·
·

Sorted OutputWeights
·
·
·

Sorted OutputWeights

FSUnpool

• To avoid the responsibility problem, we can make the auto-encoder
permutation-equivariant. Rotating the square should rotate the outputs too.
• Store the permutation of the sort in FSPool, then invert permutation to restore
the same order as the input =) permutation-equivariant.
• FSUnpool (vector-to-set): “Unpool” by doing Step � in reverse, then “unsort” by
doing Step � in reverse (invert permutation).

Auto-encoding sets

Rotating polygons
Eval: Chamfer loss
FSPool & FSUnpool �.��� �.��� �.��� �.���
MLP � Chamfer loss �.��� �.��� �.��� �.���
MLP � Hungarian loss �.��� �.��� �.��� �.���
Random ��.��� ��.��� �.��� �.���

Denoising auto-encoder for di�erent noise levels
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Encoding sets

MNIST set classification � epoch of training �� epochs of training
Weights from auto-encoder: Frozen Unfrozen Random init Frozen Unfrozen Random init
FSPool ��.��±�.� ��.��±�.� ��.��±�.� ��.��± �.� ��.��±�.� ��.��±�.�

Sum ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.�

Mean ��.��±�.� ��.��±��.� ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.�

Max ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.� ��.��±�.�

CLEVR Epochs to reach accuracy Time for
Accuracy ��.��� ��.��� ��.��� ��� epochs

FSPool ��.���±�.�� ���± � ���±�� ���±�� �.� h
RN ��.���±�.�� ���± � ���±�� *���±�� ��.� h
Janossy ��.���±�.�� – – – ��.� h
Sum ��.���±�.�� ���±�� ���±�� ���±�� �.� h
Mean ��.���±�.�� ���± � ���±�� ���±�� �.� h
Max ��.���±�.�� – – – �.� h

•Replace sum or max with FSPool for
consistent improvements.
•Also improves Relation Networks
and a top graph classifier.
• FSUnpool avoids the responsibility
problem, but only in auto-encoders.
� See Deep Set Prediction Networks
poster at this workshop for gen-
eral solution.

Code available at
https://github.com/Cyanogenoid/fspool

Fixed size

Variable size

Variable size



Generating Sets

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) Deep Set Prediction Networks. In Advances in Neural Information Processing Systems 32. vol. 32, Neural 
Information Processing Systems.


Yan Zhang and Jonathon Hare and Adam Prügel-Bennett (2020) FSPool: Learning Set Representations with Featurewise Sort Pooling. International Conference on Learning 
Representations.


Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) FSPool: Learning set representations with featurewise sort pooling. Sets & Partitions: NeurIPS 2019 Workshop


Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) Deep Set Prediction Networks. Sets & Partitions: NeurIPS 2019 Workshop



Learning how to pool sets of vectors

• Many problems involve 
predicting a set of outputs for a 
given input


• predicting all the objects in 
images (types, positions, etc)


• molecule generation


• …

Motivation: Learning how to pool sets of vectors

Consider a system for answering
questions based on an image

e.g. You want to ask how
many red objects are in the
scene to the right

There are multiple objects in the
scene and no canonical ordering
(they are a set); if each object
was represented by a vector how
could we filter that set and
reduce it to a single vector?
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Predicting sets
Learning unordered things with an ordered function is hard

• Problem: turn a vector (or more generally tensor) into a set of vectors


• Applications: predicting objects in images, molecule generation, …


• But, MLPs have ordered outputs and sets are by definition unordered
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Predicting sets
Learning unordered things with an ordered function is hard
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Reversing an invariant encoder
Deep Set Prediction Networks

• Solution: need to define a function (or procedure) that is unordered


• Observation: gradient of a permutation-invariant encoder (set to vector) with 
respect to the input are permutation equivariant


• i.e. gradients  do not depend on order!


• Implication: to decode a feature vector into a set, we can use gradient descent to 
find a set that encodes to that feature vector


• We can define a procedure that iteratively follows gradients in the forward pass

δloss
δset
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Autoencoding sets

D��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-BennettD��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-�, -�)
( �, -�)
( �, �)
(-�, �)

(-�, �)
( �, �)
( �, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

���d

MSE

MSE loss

ResNet��
Encoder

En
co
de
r

�@ MSE
@ Step �

Step � Step � Step ��

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn
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Object detection

D��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-BennettD��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-�, -�)
( �, -�)
( �, �)
(-�, �)

(-�, �)
( �, �)
( �, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

���d

MSE

MSE loss

ResNet��
Encoder

En
co
de
r

�@ MSE
@ Step �

Step � Step � Step ��

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn
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Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP
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( �, �)
(-�, �)

(-�, �)
( �, �)
( �, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.
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• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�
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• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn
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Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
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• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.
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• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�
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• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn
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Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
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(-�, -�)
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• The responsibility problem:
(a)

(c) (d)

(b)
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✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.
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• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�
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• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�
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Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn
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Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:
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• The responsibility problem:
(a)
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• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.
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• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�
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• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn
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Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-�, -�)
( �, -�)
( �, �)
(-�, �)

(-�, �)
( �, �)
( �, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.
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• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�
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• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn


