Working with Sets Incorporating constraints in learning machines through model architecture

Learning to Pool

Yan Zhang and Jonathon Hare and Adam Prügel-Bennett (2020) FSPool: Learning Set Representations with Featurewise Sort Pooling. International Conference on Learning **Representations.** Yan Zhang, Jonathon Hare, Adam Prügel-Bennett (2019) Learning Representations of Sets through Optimized Permutations. International Conference on Learning Representations Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) FSPool: Learning set representations with featurewise sort pooling. Sets & Partitions: NeurIPS 2019 Workshop

Motivation

Learning how to pool sets of vectors

- Consider a system for answering questions based on an image
 - e.g. You want to ask how many red objects are in the scene to the right
- There are multiple objects in the scene and no canonical ordering (they are a set); if each object was represented by a vector how could we filter that set and reduce it to a single vector?

Pooling sets of vectors Permutation invariance is hard to learn

- **Problem**: Want to learn a function to turn sets (of vectors) into a single vector.
 - Function clearly needs to be permutation invariant
 - MLPs really struggle with learning symmetries in this scenario for a set of cardinality *n* there are *n*! possible combinations of input that should have the same output
 - The problem arises from discontinuities
 - We still want to learn the function rather than predefine weighted average, min, max, ...

Incorporating constraints in learning machines through model architecture

Featurewise Sort Pooling **FSPool**

Incorporating constraints in learning machines through model architecture

Featurewise Sort Pooling **FSPool**

- Solution: sort vectors feature-wise (with a differentiable sort) & take dotproduct with a set of learned weights
 - For each feature, across the set of vectors, the dot-product is computing a weighted average
 - Weights of [1,0,0...] selects *min*; [0,0...,1] is *max*; [1,...,1] is the sum

Incorporating constraints in learning machines through model architecture

Variable sized sets **Piecewise linear approximations**

- **Problem:** Previously described method requires a weight per feature per vector; what if the number of vectors can vary?
- Solution: Continuous relaxation use a parametric piecewise-linear function (a calibrator function) for each feature to estimate the weight for each of the vectors

Incorporating constraints in learning machines through model architecture

Experimental results

Auto-encoding sets

	Fixed s	IZe		
Rotating polygons Eval: Chamfer loss	•	•		
FSPool & FSUnpool	0.001	0.001	0.001	0.000
MLP + Chamfer loss	1.189	1.771	0.274	1.272
MLP + Hungarian loss	1.517	0.400	0.251	1.266
Random	72.848	19.866	5.112	1.271

Denoising auto-encoder for different noise levels

-	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05
Input	6	9	Manning .					1927-19 1955-19 1956-19				
Target	6	9		3	3	3	8	5	2	2	6	9
Ours		Ş									and the	
MLP			State Barris									
Variable size												

Encoding sets

MNIST se

Weights

FSPool
Sum
Mean
Max

CLEVR

FSPool
RN
Janossy
Sum
Mean
Max

Incorporating constraints in learning machines through model architecture

et classifi	cation	n 1 epoch of training 10 epochs of t			rain				
from auto-encoder:		er: Froz	en Unf	Unfrozen Ra		n init	Frozen	Unfrozen	Ra
		82.2 76.6 25.7 73.6	$\%_{\pm 2.1}$ 86. $\%_{\pm 1.3}$ 68. $\%_{\pm 3.6}$ 32. $\%_{\pm 1.3}$ 73.	9%±1.3 .7%±3.5 2%±10.5 0%±3.5	84.7 % 30.3% 30.1% 56.1%	O±1.9 O±5.6 O±1.6 O±5.6	$\begin{array}{c} \textbf{84.3\%}_{\pm 1.8} \\ \textbf{79.0\%}_{\pm 1.0} \\ \textbf{36.8\%}_{\pm 5.0} \\ \textbf{77.3\%}_{\pm 0.9} \end{array}$	91.5%±0.5 77.7%±2.3 75.0%±2.7 80.4%±1.8	-
Accuracy 99.27%±0.18 98.98%±0.25 97.00%±0.54 99.05%±0.17	Epochs 1 98.00% 141±5 144±6 - 146±13	to reach 98.50% 166 ±16 189±29 – 191±40	vanacy accuracy 99.00% 209±33 *268±46 - 281±56	2 Time 350 ep 8.2 15.9 11.9 8.0	e for pochs 8 h 5 h 5 h 6 h	 Report of the content of th	olace sum o sistent im o improve l a top grap Inpool avo blem, but o	or max with provements s Relation oh classifier oids the res only in auto	FSP 5. Ne r. pon -end
98.96%±0.27 96.99%±0.26	169±6 –	225±31	2/3±33	8.0 8.0	o h				

Generating Sets

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) Deep Set Prediction Networks. In Advances in Neural Information Processing Systems 32. vol. 32, Neural Information Processing Systems.

Yan Zhang and Jonathon Hare and Adam Prügel-Bennett (2020) FSPool: Learning Set Representations with Featurewise Sort Pooling. International Conference on Learning Representations.

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) FSPool: Learning set representations with featurewise sort pooling. Sets & Partitions: NeurIPS 2019 Workshop

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) Deep Set Prediction Networks. Sets & Partitions: NeurIPS 2019 Workshop

Motivation

Learning how to pool sets of vectors

- Many problems involve predicting a set of outputs for a given input
 - predicting all the objects in images (types, positions, etc)
 - molecule generation

Predicting sets Learning unordered things with an ordered function is hard

- **Problem:** turn a vector (or more generally tensor) into a set of vectors
 - Applications: predicting objects in images, molecule generation, ...
 - But, MLPs have ordered outputs and sets are by definition unordered

Incorporating constraints in learning machines through model architecture

Predicting sets Learning unordered things with an ordered function is hard

Incorporating constraints in learning machines through model architecture

Reversing an invariant encoder Deep Set Prediction Networks

- Solution: need to define a function (or procedure) that is *unordered*
 - **Observation**: gradient of a permutation-invariant encoder (set to vector) with respect to the input are permutation equivariant

, i.e. gradients
$$\frac{\delta loss}{\delta set}$$
 do not depend

- Implication: to decode a feature vector into a set, we can use gradient descent to find a set that encodes to that feature vector
 - We can define a procedure that iteratively follows gradients in the forward pass

Incorporating constraints in learning machines through model architecture

d on order!

Autoencoding sets

Incorporating constraints in learning machines through model architecture

Object detection

Incorporating constraints in learning machines through model architecture

Target

Object detection Input 512d ResNet34

Bounding box prediction

MLP baseline **RNN** baseline **Ours** (train 10 steps, eval 10 steps) $98.8_{\pm 0.3}$ **Ours** (train 10 steps, eval 20 steps) **Ours** (train 10 steps, eval 30 steps)

Incorporating constraints in learning machines through model architecture

Object and attribute prediction

Object attribute prediction

MLP baseline **RNN** baseline **Ours** (train 10 steps, eval 10 steps) **Ours** (train 10 steps, eval 20 steps) Ours (train 10 steps, eval 30 steps)

Incorporating constraints in learning machines through model architecture

	AP_∞	AP ₁	AP _{0.5}	AP _{0.25}	AP _{0.125}
	$3.6 \scriptscriptstyle \pm 0.5$	1.5 ±0.4	$\textbf{0.8}_{\pm \text{0.3}}$	0.2 ±0.1	0.0 ±0.0
	4.0 ±1.9	$\textbf{1.8}_{\pm 1.2}$	0.9 ±0.5	0.2 ±0.1	0.0 ±0.0
)	$\textbf{72.8}_{\pm 2.3}$	$59.2 \scriptscriptstyle \pm 2.8$	39.0 _{±4.4}	12.4 ±2.5	1.3 ±0.4
)	$84.0{\scriptstyle \pm 4.5}$	$80.0 \scriptstyle \pm 4.9$	57.0 ±12.1	16.6 ±9.0	1.6 ±0.9
)	85.2 _{±4.8}	81.1 ±5.2	47.4 ±17.6	10.8 ±9.0	0.6 ±0.7

Step 10	Step 20	Target
x, y, z = (-2.33, -2.41, 0.73)	x, y, z = (-2.33, -2.42, 0.78)	x, y, z = (-2.42, -2.40, 0.70)
large yellow metal cube	large yellow metal cube	large yellow metal cube
x, y, z = (-1.20, 1.27, 0.67)	x, y, z = (-1.21, 1.20, 0.65)	x, y, z = (-1.18, 1.25, 0.70)
large purple rubber sphere	large purple rubber sphere	large purple rubber sphere
x, y, z = (-0.96, 2.54, 0.36)	x, y, z = (-0.96, 2.59, 0.36)	x, y, z = (-1.02, 2.61, 0.35)
small gray rubber sphere	small gray rubber sphere	small gray rubber sphere
x, y, z = (1.61, 1.57, 0.36)	x, y, z = (1.58, 1.62, 0.38)	x, y, z = (1.74, 1.53, 0.35)
small <mark>yellow</mark> metal cube	small purple metal cube	small purple metal cube

