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Motivation

Learning how to pool sets of vectors

* Consider a system for answering
questions based on an image

* e.g. You want to ask how many
red objects are in the scene to
the right

 There are multiple objects in the
scene and no canonical ordering
(they are a set); If each object was
represented by a vector how
could we filter that set and reduce
it to a single vector?
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Pooling sets of vectors

Permutation invariance i1s hard to learn

* Problem: Want to learn a function to turn sets (of vectors) into a single vector.

* Function clearly needs to be permutation invariant

 MLPs really struggle with learning symmetries in this scenario - for a set of
cardinality n there are n! possible combinations of input that should have the

same output
* The problem arises from discontinuities

* We still want to learn the function rather than predefine - weighted average, min,
max, ...

Incorporating constraints in learning machines through model architecture Jonathon Hare



University of

Southampton

Featurewise Sort Pooling
FSPool
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Featurewise Sort Pooling
FSPool

e Solution: sort vectors feature-wise (with a differentiable sort) & take dot-
product with a set of learned weights

 For each feature, across the set of vectors, the dot-product is computing a
weighted average

 Weights of [1,0,0...] selects min; [0,0...,1] is max; [1,...,1] is the sum
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Variable sized sets

Piecewise linear approximations

* Problem: Previously described method requires a weight per feature per
vector; what if the number of vectors can vary?

e Solution: Continuous relaxation - use a parametric piecewise-linear function
(a calibrator function) for each feature to estimate the weight for each of the
vectors
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Experimental results

Auto-encoding sets Encoding sets
Fixed size
Rotating polygons |- B LD B R MNIST set classification 1 epoch of training 10 epochs of training
Eval: Chamfer loss . ° . Weights from auto-encoder: Frozen Unfrozen Randominit Frozen Unfrozen Random init
FSPool & FSUnpool 0.001 0.001 0.001 0.000 FSPool 82.2%... 86.9%.:; 84.7%.s  84.3%:1s  91.5%-0s 91.9% o5
MLP + Chamfer loss 1189 1.771 0.274  1.272 Sum 76.6%.s  68.7%:ss 30.3%:s¢c  79.0%:10  77.7%: 72.7% .
MLP + Hungarian loss  1.517 0.400  0.251 1.266 Mean 25.7%:5  32.2%: 05 30.1%:1s 36.8%::0  75.0%:; 73.0%:+;
Random 72.848 19.866  5.112 1.271 Max 73.6%:1;  73.0%.3 56.1%s. 77.3%:05  80.4%.:s 76.9%.:5
Variable size .
Denoising auto-encoder for different noise levels CLEVR Epochs to reach accuracy Time for * Replace sum or max with FSPool for

consistent improvements.
*Also improves Relation Networks

Accuracy 98.00% 98.50% 99.00% 350 epochs
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Motivation

Learning how to pool sets of vectors

 Many problems involve
predicting a set of outputs for a
given input

e predicting all the objects in
images (types, positions, etc)

 molecule generation




University of

Southampton

Predicting sets

Learning unordered things with an ordered function is hard

 Problem: turn a vector (or more generally tensor) into a set of vectors
* Applications: predicting objects in images, molecule generation, ...

 But, MLPs have ordered outputs and sets are by definition unordered
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Predicting sets

Learning unordered things with an ordered function is hard

Incorporating constraints in learning machines through model architecture Jonathon Hare



University of

Southampton

Reversing an invariant encoder
Deep Set Prediction Networks

* Solution: need to define a function (or procedure) that is unordered

* Observation: gradient of a permutation-invariant encoder (set to vector) with
respect to the input are permutation equivariant

| | 0loss
. l.e. gradients do not depend on order!

oset

* Implication: to decode a feature vector into a set, we can use gradient descent to
find a set that encodes to that feature vector

 We can define a procedure that iteratively follows gradients in the forward pass
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Autoencoding sets

Input Target

MSE
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Object detection
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Object detection

Target
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Bounding box prediction AP, APy, APs,: APgs APy,
MLP baseline 00.3:0: 94.0:9 57.94 070> 0.0:00
RNN baseline 00.4i0>: 94.9:0 65.0:05 2400 0.000

Ours (train 10 steps, eval 10 steps) 98.8:0; 94.3:s 85710 34557 2.9
Ours (train 10 steps, eval 20 steps) 99.8..c 98.7.. 86.2... 24.3:s0 1.Luos
Ours (train 10 steps, eval 30 steps) 99.8... 96.7-.. 75.5:w5 174w 0.9
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Object and attribute prediction

Object attribute prediction AP AP, APo:  APgoc APgios
MLP baseline 3.6005  1.50. 0.80; 0.2:0: 0.000
RNN baseline 4,045 1.84: 0.9.05 0.2:0: 0.0:00

Ours (train 10 steps, eval 10 steps) 72.8.:; 59.2.s 39.0.u 12405 1.3
Ours (train 10 steps, eval 20 steps) 84.0..; 80.0.s 57.0:2 16.6.00 1.6.05
Ours (train 10 steps, eval 30 steps) 85.2... 811.. 47.4.06 10.850 0.6

Input Step 5 Step 10 Step 20 Target

X, V, Z = (-0.14, 116, 3.57) X,V,z=(-2.33,-2.41,073) X V,z=(-2.33,-2.42,0.78) XV, z=(-2.42, -2.40, 0.70)
large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

X, Y, Z = (0.01, 012, 3.42) X, V, Z = (-1.20, 1.27, 0.67) X, VY, Z = (-1.21, 1.20, 0.65) X, V, Z = (-118, 1.25, 0.70)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

X, V, z = (0.67, 0.65, 3.38) X,V,z=(-0.96,2.54 0.36) XV,z=(-0.96,259,0.36) XV, z=(-1.02, 2.61, 0.35)
small purple metal cube  small gray rubber sphere  small gray rubber sphere  small gray rubber sphere

X, V, Z = (0.67, 114, 2.96) X, V, Z = (1.61, 1.57, 0.36) X, V, z = (1.58, 1.62, 0.38) X, V, Z = (1.74, 1.53, 0.35)
small purple rubber sphere small yellow metal cube  small purple metal cube  small purple metal cube
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