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Gradient descent and SGD (again), and mini-batch SGD

We’ll start up by looking again at gradient descent algorithms and their
behaviours...
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Reminder: Gradient Descent

Define total loss as L =
∑

(x,y)∈D ℓ(g(x, θ), y) for some loss function
ℓ, dataset D and model g with learnable parameters θ.
Define how many passes over the data to make (each one known as
an Epoch)
Define a learning rate η

Gradient Descent updates the parameters θ by moving them in the
direction of the negative gradient with respect to the total loss L by the
learning rate η multiplied by the gradient:

for each Epoch:
θ ← θ − η∇θL
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Gradient Descent

Gradient Descent has good statistical properties (very low variance)
But is very data inefficient (particularly when data has many
similarities)
Doesn’t scale to effectively infinite data (e.g. with augmentation)
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Reminder: Stochastic Gradient Descent

Define loss function ℓ, dataset D and model g with learnable
parameters θ.
Define how many passes over the data to make (each one known as
an Epoch)
Define a learning rate η

Stochastic Gradient Descent updates the parameters θ by moving them in
the direction of the negative gradient with respect to the loss of a single
item ℓ by the learning rate η multiplied by the gradient:

for each Epoch:
for each (x, y) ∈ D:

θ ← θ − η∇θℓ

Jonathon Hare Optimisation 6 / 21



Stochastic Gradient Descent

Stochastic Gradient Descent has poor statistical properties (very high
variance)
But is computationally inefficient (poor utilisation of resources -
particularly with respect to vectorisation)
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Mini-batch Stochastic Gradient Descent

Define a batch size b
Define batch loss as Lb =

∑
(x,y)∈Db

ℓ(g(x, θ), y) for some loss
function ℓ and model g with learnable parameters θ. Db is a subset
of dataset D of cardinality b.
Define how many passes over the data to make (each one known as
an Epoch)
Define a learning rate η

Mini-batch Gradient Descent updates the parameters θ by moving them in
the direction of the negative gradient with respect to the loss of a
mini-batch Db, Lb by the learning rate η multiplied by the gradient:

partition the dataset D into an array of subsets of size b
for each Epoch:

for each Db ∈ partitioned(D):
θ ← θ − η∇θLb
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Mini-batch Stochastic Gradient Descent

Mini-batch Stochastic Gradient Descent has reasonable statistical
properties (much lower variance than SGD)
Allows for computationally efficiency (good utilisation of resources)

Ultimately we would normally want to make our batches as big as
possible for lower variance gradient estimates, but:

Must still fit in RAM (e.g. on the GPU)
Must be able to maintain throughput (e.g. pre-processing on the CPU;
data transfer time)
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So, what about the learning rate?

Choice of learning rate is extremely important

But we have to reason about the ‘loss landscape’

Most convergence analysis of optimisation algorithms assumes a convex
loss landscape

Easy to reason about
Can be shown that (S)GD will converge to the optimal solution for a
variety of learning rates
Can give insights into potential problems in the non-convex case

Deep Learning is highly non-convex

Many local minima
Plateaus
Saddle points
Symmetries (permutation, etc)
Certainly no single global minima
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*GD in the convex case: failure modes
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Accelerated Gradient Methods

Accelerated gradient methods use a leaky average of the gradient,
rather than the instantaneous gradient estimate at each time step

A physical analogy would be one of the momentum a ball picks up
rolling down a hill...
As you’ll see, this helps address the *GD failure modes, but also helps
avoid getting stuck in local minima
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Momentum I

It’s common for the ‘leaky’ average (the ‘velocity’, vt) to be a weighted
average of the instantaneous gradient gt and the past velocity1:

vt = βvt−1 + gt

where β ∈ [0, 1] is the ‘momentum’.

1There are quite a few variants of this; here we’re following the PyTorch variant
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Momentum II

The momentum method allows to accumulate velocity in directions of
low curvature that persist across multiple iterations
This leads to accelerated progress in low curvature directions
compared to gradient descent
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MB-SGD with Momentum

Learning with momentum on iteration t (batch at t denoted by b(t)) is
given by:

vt ← βvt−1 +∇θLb(t)

θt ← θt−1 − ηvt

Note β = 0.9 is a good choice for the momentum parameter.
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SGD with Momentum - potentially better convex
convergence
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Learning rate schedules

In practice you want to decay your learning rate over time

Smaller steps will help you get closer to the minima
But don’t do it to early, else you might get stuck
Something of an art form!

‘Grad Student Descent’ or GDGS (‘Gradient Descent by Grad Student‘)
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Reduce LR on plateau

Common Heuristic approach:
if the loss hasn’t improved (within some tolerance) for k epochs
then drop the lr by a factor of 10

Remarkably powerful!
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Cyclic learning rates

Worried about getting stuck in a non-optimal local minima?

Cycle the learning rate up and down (possibly annealed), with a
different lr on each batch
See https://arxiv.org/abs/1506.01186

Jonathon Hare Optimisation 19 / 21

https://arxiv.org/abs/1506.01186


Cyclic learning rates

Worried about getting stuck in a non-optimal local minima?
Cycle the learning rate up and down (possibly annealed), with a
different lr on each batch

See https://arxiv.org/abs/1506.01186

Jonathon Hare Optimisation 19 / 21

https://arxiv.org/abs/1506.01186


Cyclic learning rates

Worried about getting stuck in a non-optimal local minima?
Cycle the learning rate up and down (possibly annealed), with a
different lr on each batch
See https://arxiv.org/abs/1506.01186

Jonathon Hare Optimisation 19 / 21

https://arxiv.org/abs/1506.01186


More advanced optimisers
Adagrad

Decrease learning rate dynamically per weight.
Squared magnitude of the gradient (2nd moment) used to adjust how
quickly progress is made - weights with large gradients are
compensated with a smaller learning rate.
Particularly effective for sparse features.

RMSProp
Modifies Adagrad to decouple learning rate from gradient magnitude
scaling
Incorporates leaky averaging of squared gradient magnitudes
LR would typically follow a predefined schedule

Adam
Essentially takes all the best ideas from RMSProp and
SDG+Momentum
Bias corrected momentum and second moment estimation
Shown that it might still diverge (or be non optimal, even in convex
settings)...
LR is still a hyperparameter (you might still schedule)
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Take-away messages

The loss landscape of a deep network is complex to understand (and
is far from convex)
If you’re in a hurry to get results use Adam
If you have time (or a Grad Student at hand), then use SGD (with
momentum) and work on tuning the learning rate
If you’re implementing something from a paper, then follow what they
did!
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