Forget to remember
Remember to forget

Vision

ooooooo

Long Short Term Memories and Gated Recurrent Units

Jonathon Hare

Vision, Learning and Control
University of Southampton

Some of the images and animations used here were originally designed by Adam Priigel-Bennett.

Jonathon Hare LSTMs and GRUs 2/13

Recap: An RNN is just a recursive function invocation

o y(t) = f(x(t), e(t)| Wr)
e and the state c(t) = g(x(t), c(t — 1)|Wg)

o If the output y(t) depends on the input x(t — 2), then prediction will
be

f(x(t), g(x(1), g(x(t — 1), g(x(t - 2), c(t — 2)|Wg)| W)| Wy)| W)

@ it should be clear that the gradients of this with respect to the
weights can be found with the chain rule

Jonathon Hare LSTMs and GRUs 3/13

Recap: An RNN is just a recursive function invocation

o y(t) = f(x(t), e(t)| Wr)
e and the state c(t) = g(x(t), c(t — 1)|Wg)

o If the output y(t) depends on the input x(t — 2), then prediction will
be

f(x(t), g(x(1), g(x(t — 1), g(x(t - 2), c(t — 2)|Wg)| W)| Wy)| W)

@ it should be clear that the gradients of this with respect to the
weights can be found with the chain rule

@ The back-propagated error will involve applying f multiple times

Jonathon Hare LSTMs and GRUs 3/13

Recap: An RNN is just a recursive function invocation

o y(t) = f(x(t), e(t)| Wr)
e and the state c(t) = g(x(t), c(t — 1)|Wg)

o If the output y(t) depends on the input x(t — 2), then prediction will
be

f(x(t), g(x(1), g(x(t — 1), g(x(t - 2), c(t — 2)|Wg)| W)| Wy)| W)

@ it should be clear that the gradients of this with respect to the
weights can be found with the chain rule

@ The back-propagated error will involve applying f multiple times

@ Each time the error will get multiplied by some factor a

Jonathon Hare LSTMs and GRUs 3/13

Recap: An RNN is just a recursive function invocation

o y(t) = f(x(t), e(t)| Wr)
e and the state c(t) = g(x(t), c(t — 1)|Wg)

o If the output y(t) depends on the input x(t — 2), then prediction will
be

f(x(t), g(x(1), g(x(t — 1), g(x(t - 2), c(t — 2)|Wg)| W)| Wy)| W)

@ it should be clear that the gradients of this with respect to the
weights can be found with the chain rule

@ The back-propagated error will involve applying f multiple times
@ Each time the error will get multiplied by some factor a

o If y(t) depends on the input x(t — 7) then the back-propagated
signal will be proportional to a™ 1

Jonathon Hare LSTMs and GRUs 3/13

Recap: An RNN is just a recursive function invocation

o y(t) = f(x(t), c(t)|Wr)

e and the state c(t) = g(x(t), c(t — 1)|Wg)

o If the output y(t) depends on the input x(t — 2), then prediction will
be

f(x(t), g(x(1), g(x(t — 1), g(x(t - 2), c(t — 2)|Wg)| W)| Wy)| W)

@ it should be clear that the gradients of this with respect to the
weights can be found with the chain rule

@ The back-propagated error will involve applying f multiple times
@ Each time the error will get multiplied by some factor a

o If y(t) depends on the input x(t — 7) then the back-propagated
signal will be proportional to a™ 1

@ This either vanishes or explodes when 7 becomes large

Jonathon Hare LSTMs and GRUs 3/13

Vanishing and Exploding Gradients

y(t) = wy (2(t) + way(t — 1))

yws

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

Vanishing and Exploding Gradients

Jonathon Hare LSTMs and GRUs 4/13

LSTM Architecture

@ The LSTM (long-short term memory) was designed to solve this
problem

Jonathon Hare LSTMs and GRUs 5/13

LSTM Architecture

@ The LSTM (long-short term memory) was designed to solve this
problem

o Key ideas: to retain a ‘long-term memory' requires

c(t)=c(t—1)

Jonathon Hare LSTMs and GRUs 5/13

LSTM Architecture

@ The LSTM (long-short term memory) was designed to solve this
problem

o Key ideas: to retain a ‘long-term memory' requires
c(t)=c(t—1)

@ Sometimes we have to forget and sometimes we have to change a
memory

Jonathon Hare LSTMs and GRUs 5/13

LSTM Architecture

The LSTM (long-short term memory) was designed to solve this
problem

o Key ideas: to retain a ‘long-term memory' requires
c(t)=c(t—1)

@ Sometimes we have to forget and sometimes we have to change a
memory

To do this we should use ‘gates’ that saturate at 0 and 1

Jonathon Hare LSTMs and GRUs 5/13

LSTM Architecture

@ The LSTM (long-short term memory) was designed to solve this
problem

o Key ideas: to retain a ‘long-term memory' requires
c(t)=c(t—1)

@ Sometimes we have to forget and sometimes we have to change a
memory

@ To do this we should use ‘gates’ that saturate at 0 and 1

@ Sigmoid functions naturally saturate at 0 and 1

Jonathon Hare LSTMs and GRUs 5/13

LSTM Architecture

LSTM

Jonathon Hare LSTMs and GRUs 6/13

LSTM Architecture

Long Term Memory
et —1) { } ¢(t)

LSTM

Jonathon Hare LSTMs and GRUs 6/13

LSTM Architecture

c(t—l){

} c(t)

tanh

Output

LSTM

Jonathon Hare LSTMs and GRUs

6/13

LSTM Architecture

} c(t)

oft - 1){

tanh

tanh(c;(t)) € {—1,1}

r

Jonathon Hare

LSTM

LSTMs and GRUs

6/

13

LSTM Architecture

oft - 1){

Previous Output = Short Term Memory

tanh

h(t—1) {

LSTM

Jonathon Hare LSTMs and GRUs

} c(t)

6/13

LSTM Architecture

}

ct—1) {

tanh

ht-1) {

Inputs

Jonathon Hare

LSTM

LSTMs and GRUs

c(t)

6/

13

LSTM Architecture

c(t—1) {

Forget Gate

tanh

Jonathon Hare

LSTM

LSTMs and GRUs

}c@

6/13

LSTM Architecture

c(t—1) {

tanh

hu71){

I

Jonathon Hare

——
x(t)

LSTM

LSTMs and GRUs

}ca)

} h(t)

6/13

LSTM Architecture

oft—1) { }c(t)
2 [t —=1)

aj(Wiz(t) + by) it — 1)

tanh

R(t—1) { W } h(t)

LSTM

——
x(t)

Jonathon Hare LSTMs and GRUs 6/13

LSTM Architecture

oft—1) { } oft)
g
g
= =l
i) E|
2
R(t—1) { W } h(t)

LSTM

——
x(t)

Jonathon Hare LSTMs and GRUs 6/13

LSTM Architecture

}cm

c(t—1) {

h@-n{

(Z(t) + by)

= tanh(

g(t)

tanh

P

Jonathon Hare

——
=(t)

LSTM

LSTMs and GRUs

6/13

LSTM Architecture

c(t—1) {

Gate Memory Update

tanh

R(t—1) {

Jonathon Hare

——
=(t)

LSTM

LSTMs and GRUs

} o(t)

} 20)

6/13

LSTM Architecture

} (t)

ett-1) { =
T &)
¥
Y .
tanh '5
Rt —1) {
LSTM

i

Jonathon Hare

——
x(t)

LSTMs and GRUs

6/

13

LSTM Architecture

¢i(t) = fi(t) ¢j(t = 1) + by + g;(8) 5(t) + bi

oft—1) { 3 = } (t)
T [©] &)
= +
= =
= +
5 % =
@ N_m
=
A =
a
4 tanh E =
I E
=
S
R(t—1) { W } h(t)

LSTM

——
=(t)

Jonathon Hare LSTMs and GRUs 6/13

LSTM Architecture

m—n{ }dﬁ
[®
7 tanh ..él
ha—m{ 4 }hm
Gate Outputs Lo W
LSTM
——
=(t)
Jonathon Hare LSTMs and GRUs

6/13

LSTM Architecture

c(t—1) { } (t)
[©] &)
© —
<
+
a o tanh :{;; -g
h(t—1) { W } 20)

LSTM

——
=(t)

Jonathon Hare LSTMs and GRUs 6/13

LSTM Architecture

c(t—1) { } (t)
[©] &)
© —
<
+ =
o o tanh :{;/ -g E
< 3| =
E
\.Q;
h(t—1) { ﬁ } 20)
LSTM

——
=(t)

Jonathon Hare LSTMs and GRUs 6/13

LSTM Architecture

e(t—1) {

tanh

tanh

h(t—1) {

}c@

"

Jonathon Hare

——
=(t)

LSTM

LSTMs and GRUs

6/13

Update Equations

Initially, for t =1, h(0) =0
o Inputs z(t) = (x(t), h(t — 1))

Jonathon Hare LSTMs and GRUs 7/13

Update Equations

Initially, for t =1, h(0) =0
o Inputs z(t) = (x(t), h(t — 1))
o Network updates (W, and b, are the learnable parameters)
f(t) = o(W z(t) + by) i(t) =o(W z(t) + b;)
g(t) = tanh(V z(t) + bg) o(t) = o (W 2(t) + bo)

Jonathon Hare LSTMs and GRUs 7/13

Update Equations

Initially, for t =1, h(0) =0
o Inputs z(t) = (x(t), h(t — 1))
o Network updates (W, and b, are the learnable parameters)

F(t) = (W 2(1) + by) i(t) = (Wi 2(1) + by)
g(t) = tanh(W, z(t) + bg) o(t) = o(W, z(t) + b,)

o Long-term memory update

c(t)=Ff(t)oc(t—1)+g(t) ©i(t)

Jonathon Hare LSTMs and GRUs 7/13

Update Equations

Initially, for t =1, h(0) =0
o Inputs z(t) = (x(t), h(t — 1))
o Network updates (W, and b, are the learnable parameters)

F(t) = (W 2(1) + by) i(t) = (Wi 2(1) + by)
g(t) = tanh(W, z(t) + bg) o(t) = o(W, z(t) + b,)

o Long-term memory update
c(t)=Ff(t)oc(t—1)+g(t) ©i(t)

@ Output h(t) = o(t) ® tanh(c(t))

Jonathon Hare LSTMs and GRUs 7/13

Training LSTMs

@ We can train an LSTM by unwrapping it in time.

Jonathon Hare LSTMs and GRUs 8/13

Training LSTMs

@ We can train an LSTM by unwrapping it in time.

o Note that it involves four dense layers with sigmoidal (or tanh)
outputs.

Jonathon Hare LSTMs and GRUs 8/13

Training LSTMs

@ We can train an LSTM by unwrapping it in time.

o Note that it involves four dense layers with sigmoidal (or tanh)
outputs.

@ This means that typically it is very slow to train.

Jonathon Hare LSTMs and GRUs 8/13

Training LSTMs

@ We can train an LSTM by unwrapping it in time.

o Note that it involves four dense layers with sigmoidal (or tanh)
outputs.

@ This means that typically it is very slow to train.

@ There are a few variants of LSTMs, but all are very similar. The most
popular is probably the Gated Recurrent Unit (GRU).

Jonathon Hare LSTMs and GRUs 8/13

LSTM Success Stories

@ LSTMs have been used to win many competitions in speech and
handwriting recognition.

@ Major technology companies including Google, Apple, and Microsoft
are using LSTMs as fundamental components in products.

@ Google used LSTM for speech recognition on the smartphone, for
Google Translate.

@ Apple uses LSTM for the " Quicktype” function on the iPhone and for
Siri.

@ Amazon uses LSTM for Amazon Alexa.

@ In 2017, Facebook performed some 4.5 billion automatic translations
every day using long short-term memory networks®.

"https://en.wikipedia.org/wiki/Long_short-term_memory
Jonathon Hare LSTMs and GRUs 9/13

https://en.wikipedia.org/wiki/Long_short-term_memory

Gated Recurrent Unit (GRU)

mt—1) { } het)

[SEE]

tanh

GRU

Jonathon Hare LSTMs and GRUs

Gated Recurrent Unit (GRU)

(t): input vector
h(t): output vector (and ‘hidden state’)
r(t): reset gate vector
(t): update gate vector
n(t): new state vector (before update is applied)

W and b: parameter matrices and biases

Jonathon Hare LSTMs and GRUs 11/13

Gated Recurrent Unit (GRU)

Initially, for t =1, h(0) =0

z(t) = o(We(x(t), h(t — 1)) + b;)
r(t) = o(Wi(x(t), h(t — 1)) + by)

n(t) = tanh(W,(x(t), r(t) © h(t — 1)) + by)
h(t) = (1—-2z(t)) © h(t — 1)+ z(t) © n(t)

Most implementations follow the original paper and swap (1 — z(t)) and (z(t)) in the
h(t) update; this doesn’t change the operation of the network, but does change the
interpretation of the update gate, as the gate would have to produce a 0 when an

update was to occur, and a 1 when no update is to happen (which is somewhat
counter-intuitive)!

Jonathon Hare LSTMs and GRUs

12/13

GRU or LSTM?

@ GRUs have two gates (reset and update) whereas LSTM has three
gates (input/output/forget)

@ GRU performance on par with LSTM but computationally more
efficient (less operations & weights).

@ In general, if you have a very large dataset then LSTMs will likely
perform slightly better.

@ GRUs are a good choice for smaller datasets.

Jonathon Hare LSTMs and GRUs 13/13

