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Recap: An RNN is just a recursive function invocation

o y(t) = f(x(t), e(t)| Wr)
e and the state c(t) = g(x(t), c(t — 1)|Wg)

o If the output y(t) depends on the input x(t — 2), then prediction will
be

f(x(t), g(x(1), g(x(t — 1), g(x(t - 2), c(t — 2)|Wg)| W )| Wy )| W)

@ it should be clear that the gradients of this with respect to the
weights can be found with the chain rule
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Recap: An RNN is just a recursive function invocation

o y(t) = f(x(t), c(t)|Wr)

e and the state c(t) = g(x(t), c(t — 1)|Wg)

o If the output y(t) depends on the input x(t — 2), then prediction will
be

f(x(t), g(x(1), g(x(t — 1), g(x(t - 2), c(t — 2)|Wg)| W )| Wy )| W)

@ it should be clear that the gradients of this with respect to the
weights can be found with the chain rule

@ The back-propagated error will involve applying f multiple times
@ Each time the error will get multiplied by some factor a

o If y(t) depends on the input x(t — 7) then the back-propagated
signal will be proportional to a™ 1

@ This either vanishes or explodes when 7 becomes large
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Vanishing and Exploding Gradients

y(t) = wy (2(t) + way(t — 1))

yws
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LSTM Architecture

@ The LSTM (long-short term memory) was designed to solve this
problem
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LSTM Architecture

@ The LSTM (long-short term memory) was designed to solve this
problem

o Key ideas: to retain a ‘long-term memory' requires
c(t)=c(t—1)

@ Sometimes we have to forget and sometimes we have to change a
memory

@ To do this we should use ‘gates’ that saturate at 0 and 1

@ Sigmoid functions naturally saturate at 0 and 1
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LSTM Architecture
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LSTM Architecture
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LSTM Architecture
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LSTM Architecture
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Update Equations

Initially, for t =1, h(0) =0
o Inputs z(t) = (x(t), h(t — 1))
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o Inputs z(t) = (x(t), h(t — 1))
o Network updates (W, and b, are the learnable parameters)

F(t) = (W 2(1) + by) i(t) = (Wi 2(1) + by)
g(t) = tanh(W, z(t) + bg) o(t) = o(W, z(t) + b,)

o Long-term memory update
c(t)=Ff(t)oc(t—1)+g(t) ©i(t)

@ Output h(t) = o(t) ® tanh(c(t))
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Training LSTMs

@ We can train an LSTM by unwrapping it in time.
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Training LSTMs

@ We can train an LSTM by unwrapping it in time.

o Note that it involves four dense layers with sigmoidal (or tanh)
outputs.

@ This means that typically it is very slow to train.

@ There are a few variants of LSTMs, but all are very similar. The most
popular is probably the Gated Recurrent Unit (GRU).
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LSTM Success Stories

@ LSTMs have been used to win many competitions in speech and
handwriting recognition.

@ Major technology companies including Google, Apple, and Microsoft
are using LSTMs as fundamental components in products.

@ Google used LSTM for speech recognition on the smartphone, for
Google Translate.

@ Apple uses LSTM for the " Quicktype” function on the iPhone and for
Siri.

@ Amazon uses LSTM for Amazon Alexa.

@ In 2017, Facebook performed some 4.5 billion automatic translations
every day using long short-term memory networks®.

"https://en.wikipedia.org/wiki/Long_short-term_memory
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Gated Recurrent Unit (GRU)
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Gated Recurrent Unit (GRU)

(t): input vector
h(t): output vector (and ‘hidden state’)
r(t): reset gate vector
(t): update gate vector
n(t): new state vector (before update is applied)

W and b: parameter matrices and biases
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Gated Recurrent Unit (GRU)

Initially, for t =1, h(0) =0

z(t) = o(We(x(t), h(t — 1)) + b;)
r(t) = o(Wi(x(t), h(t — 1)) + by)

n(t) = tanh(W,(x(t), r(t) © h(t — 1)) + by)
h(t) = (1—-2z(t)) © h(t — 1)+ z(t) © n(t)

Most implementations follow the original paper and swap (1 — z(t)) and (z(t)) in the
h(t) update; this doesn’t change the operation of the network, but does change the
interpretation of the update gate, as the gate would have to produce a 0 when an

update was to occur, and a 1 when no update is to happen (which is somewhat
counter-intuitive)!
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GRU or LSTM?

@ GRUs have two gates (reset and update) whereas LSTM has three
gates (input/output/forget)

@ GRU performance on par with LSTM but computationally more
efficient (less operations & weights).

@ In general, if you have a very large dataset then LSTMs will likely
perform slightly better.

@ GRUs are a good choice for smaller datasets.
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