
Yes,
we GAN.

Deep Generative Modelling

Jonathon Hare

Vision, Learning and Control
University of Southampton

Jonathon Hare Generative Models 2 / 32

Introduction

What is generative modelling and why do we do it?

Differentiable Generator Networks

Variational Autoencoders

Generative Adversarial Networks

Jonathon Hare Generative Models 3 / 32

Generative Modelling and Differentiable Generator
Networks

Jonathon Hare Generative Models 4 / 32

Recap: Generative Models

Learn models of the data: p(x)

Learn conditional models of the data: p(x|y = y)

Some generative models allow the probability distributions to be
evaluated explicitly

i.e. compute the probability of a piece of data x : p(x = x)

Some generative models allow the probability distributions to be
sampled

i.e. draw a sample x based on the distribution: x ∼ p(x)

Some generative models can do both of the above

e.g. a Gaussian Mixture Model is an explicit model of the data using k
Gaussians

The likelihood of data x is the weighted sum of the likelihood from
each of the k Gaussians
Sampling can be achieved by sampling the categorical distribution of k
weights followed by sampling a data point from the corresponding
Gaussian

Jonathon Hare Generative Models 5 / 32

Recap: Generative Models

Learn models of the data: p(x)

Learn conditional models of the data: p(x|y = y)

Some generative models allow the probability distributions to be
evaluated explicitly

i.e. compute the probability of a piece of data x : p(x = x)

Some generative models allow the probability distributions to be
sampled

i.e. draw a sample x based on the distribution: x ∼ p(x)

Some generative models can do both of the above

e.g. a Gaussian Mixture Model is an explicit model of the data using k
Gaussians

The likelihood of data x is the weighted sum of the likelihood from
each of the k Gaussians
Sampling can be achieved by sampling the categorical distribution of k
weights followed by sampling a data point from the corresponding
Gaussian

Jonathon Hare Generative Models 5 / 32

Recap: Generative Models

Learn models of the data: p(x)

Learn conditional models of the data: p(x|y = y)

Some generative models allow the probability distributions to be
evaluated explicitly

i.e. compute the probability of a piece of data x : p(x = x)

Some generative models allow the probability distributions to be
sampled

i.e. draw a sample x based on the distribution: x ∼ p(x)

Some generative models can do both of the above

e.g. a Gaussian Mixture Model is an explicit model of the data using k
Gaussians

The likelihood of data x is the weighted sum of the likelihood from
each of the k Gaussians
Sampling can be achieved by sampling the categorical distribution of k
weights followed by sampling a data point from the corresponding
Gaussian

Jonathon Hare Generative Models 5 / 32

Recap: Generative Models

Learn models of the data: p(x)

Learn conditional models of the data: p(x|y = y)

Some generative models allow the probability distributions to be
evaluated explicitly

i.e. compute the probability of a piece of data x : p(x = x)

Some generative models allow the probability distributions to be
sampled

i.e. draw a sample x based on the distribution: x ∼ p(x)

Some generative models can do both of the above
e.g. a Gaussian Mixture Model is an explicit model of the data using k
Gaussians

The likelihood of data x is the weighted sum of the likelihood from
each of the k Gaussians
Sampling can be achieved by sampling the categorical distribution of k
weights followed by sampling a data point from the corresponding
Gaussian

Jonathon Hare Generative Models 5 / 32

Recap: Generative Models

Learn models of the data: p(x)

Learn conditional models of the data: p(x|y = y)

Some generative models allow the probability distributions to be
evaluated explicitly

i.e. compute the probability of a piece of data x : p(x = x)

Some generative models allow the probability distributions to be
sampled

i.e. draw a sample x based on the distribution: x ∼ p(x)

Some generative models can do both of the above
e.g. a Gaussian Mixture Model is an explicit model of the data using k
Gaussians

The likelihood of data x is the weighted sum of the likelihood from
each of the k Gaussians

Sampling can be achieved by sampling the categorical distribution of k
weights followed by sampling a data point from the corresponding
Gaussian

Jonathon Hare Generative Models 5 / 32

Recap: Generative Models

Learn models of the data: p(x)

Learn conditional models of the data: p(x|y = y)

Some generative models allow the probability distributions to be
evaluated explicitly

i.e. compute the probability of a piece of data x : p(x = x)

Some generative models allow the probability distributions to be
sampled

i.e. draw a sample x based on the distribution: x ∼ p(x)

Some generative models can do both of the above
e.g. a Gaussian Mixture Model is an explicit model of the data using k
Gaussians

The likelihood of data x is the weighted sum of the likelihood from
each of the k Gaussians
Sampling can be achieved by sampling the categorical distribution of k
weights followed by sampling a data point from the corresponding
Gaussian

Jonathon Hare Generative Models 5 / 32

Why do generative modelling?

Try to understand the processes through which the data was itself
generated

Probabilistic latent variable models like VAEs or topic models (PLSA,
LDA, . . .) for text
Models that try to disentangle latent factors like β-VAE

Understand how likely a new or previously unseen piece of data is

outlier prediction, anomaly detection, . . .

Make ‘new’ data

Make ‘fake’ data to use to train large supervised models?
‘Imagine’ new, but plausible, things?

Jonathon Hare Generative Models 6 / 32

Why do generative modelling?

Try to understand the processes through which the data was itself
generated

Probabilistic latent variable models like VAEs or topic models (PLSA,
LDA, . . .) for text
Models that try to disentangle latent factors like β-VAE

Understand how likely a new or previously unseen piece of data is

outlier prediction, anomaly detection, . . .

Make ‘new’ data

Make ‘fake’ data to use to train large supervised models?
‘Imagine’ new, but plausible, things?

Jonathon Hare Generative Models 6 / 32

Why do generative modelling?

Try to understand the processes through which the data was itself
generated

Probabilistic latent variable models like VAEs or topic models (PLSA,
LDA, . . .) for text
Models that try to disentangle latent factors like β-VAE

Understand how likely a new or previously unseen piece of data is

outlier prediction, anomaly detection, . . .

Make ‘new’ data

Make ‘fake’ data to use to train large supervised models?
‘Imagine’ new, but plausible, things?

Jonathon Hare Generative Models 6 / 32

Differentiable Generator Networks

Generative Modelling is not new; we’ve known how to make arbitrarily
complex probabilistic graphical models for many years.

...But difficult to train and scale to real data, relying on MCMC.

The past few years has seen major progress along four loose strands:

Invertible density estimation - A way to specify complex generative
models by transforming a simple latent distribution with a series of
invertible functions.
Autoregressive models - Another way to model p(x) is to break the
model into a series of conditional distributions:
p(x) = p(x1)p(x2|x1)p(x3|x2, x1) . . .
Variational autoencoders - Latent-variable models that use a neural
network to do approximate inference.
Generative adversarial networks - A way to train generative models by
optimizing them to fool a classifier

Common thread in recent advances is that the loss functions
are end-to-end differentiable.

Jonathon Hare Generative Models 7 / 32

Differentiable Generator Networks

Generative Modelling is not new; we’ve known how to make arbitrarily
complex probabilistic graphical models for many years.

...But difficult to train and scale to real data, relying on MCMC.

The past few years has seen major progress along four loose strands:

Invertible density estimation - A way to specify complex generative
models by transforming a simple latent distribution with a series of
invertible functions.
Autoregressive models - Another way to model p(x) is to break the
model into a series of conditional distributions:
p(x) = p(x1)p(x2|x1)p(x3|x2, x1) . . .
Variational autoencoders - Latent-variable models that use a neural
network to do approximate inference.
Generative adversarial networks - A way to train generative models by
optimizing them to fool a classifier

Common thread in recent advances is that the loss functions
are end-to-end differentiable.

Jonathon Hare Generative Models 7 / 32

Differentiable Generator Networks

Generative Modelling is not new; we’ve known how to make arbitrarily
complex probabilistic graphical models for many years.

...But difficult to train and scale to real data, relying on MCMC.

The past few years has seen major progress along four loose strands:

Invertible density estimation - A way to specify complex generative
models by transforming a simple latent distribution with a series of
invertible functions.

Autoregressive models - Another way to model p(x) is to break the
model into a series of conditional distributions:
p(x) = p(x1)p(x2|x1)p(x3|x2, x1) . . .
Variational autoencoders - Latent-variable models that use a neural
network to do approximate inference.
Generative adversarial networks - A way to train generative models by
optimizing them to fool a classifier

Common thread in recent advances is that the loss functions
are end-to-end differentiable.

Jonathon Hare Generative Models 7 / 32

Differentiable Generator Networks

Generative Modelling is not new; we’ve known how to make arbitrarily
complex probabilistic graphical models for many years.

...But difficult to train and scale to real data, relying on MCMC.

The past few years has seen major progress along four loose strands:

Invertible density estimation - A way to specify complex generative
models by transforming a simple latent distribution with a series of
invertible functions.
Autoregressive models - Another way to model p(x) is to break the
model into a series of conditional distributions:
p(x) = p(x1)p(x2|x1)p(x3|x2, x1) . . .

Variational autoencoders - Latent-variable models that use a neural
network to do approximate inference.
Generative adversarial networks - A way to train generative models by
optimizing them to fool a classifier

Common thread in recent advances is that the loss functions
are end-to-end differentiable.

Jonathon Hare Generative Models 7 / 32

Differentiable Generator Networks

Generative Modelling is not new; we’ve known how to make arbitrarily
complex probabilistic graphical models for many years.

...But difficult to train and scale to real data, relying on MCMC.

The past few years has seen major progress along four loose strands:

Invertible density estimation - A way to specify complex generative
models by transforming a simple latent distribution with a series of
invertible functions.
Autoregressive models - Another way to model p(x) is to break the
model into a series of conditional distributions:
p(x) = p(x1)p(x2|x1)p(x3|x2, x1) . . .
Variational autoencoders - Latent-variable models that use a neural
network to do approximate inference.

Generative adversarial networks - A way to train generative models by
optimizing them to fool a classifier

Common thread in recent advances is that the loss functions
are end-to-end differentiable.

Jonathon Hare Generative Models 7 / 32

Differentiable Generator Networks

Generative Modelling is not new; we’ve known how to make arbitrarily
complex probabilistic graphical models for many years.

...But difficult to train and scale to real data, relying on MCMC.

The past few years has seen major progress along four loose strands:

Invertible density estimation - A way to specify complex generative
models by transforming a simple latent distribution with a series of
invertible functions.
Autoregressive models - Another way to model p(x) is to break the
model into a series of conditional distributions:
p(x) = p(x1)p(x2|x1)p(x3|x2, x1) . . .
Variational autoencoders - Latent-variable models that use a neural
network to do approximate inference.
Generative adversarial networks - A way to train generative models by
optimizing them to fool a classifier

Common thread in recent advances is that the loss functions
are end-to-end differentiable.

Jonathon Hare Generative Models 7 / 32

Differentiable Generator Networks

Generative Modelling is not new; we’ve known how to make arbitrarily
complex probabilistic graphical models for many years.

...But difficult to train and scale to real data, relying on MCMC.

The past few years has seen major progress along four loose strands:

Invertible density estimation - A way to specify complex generative
models by transforming a simple latent distribution with a series of
invertible functions.
Autoregressive models - Another way to model p(x) is to break the
model into a series of conditional distributions:
p(x) = p(x1)p(x2|x1)p(x3|x2, x1) . . .
Variational autoencoders - Latent-variable models that use a neural
network to do approximate inference.
Generative adversarial networks - A way to train generative models by
optimizing them to fool a classifier

Common thread in recent advances is that the loss functions
are end-to-end differentiable.

Jonathon Hare Generative Models 7 / 32

Differentiable Generator Networks: key idea

We’re interested in models that transform samples of latent variables
z to

samples x , or,
distributions over samples x

The model is a (differentiable) function g(z ,θ)
typically g is a neural network.

Jonathon Hare Generative Models 8 / 32

Example: drawing samples from N (µ,Σ)

Consider a simple generator network with a single affine layer that
maps samples N (0, I) to N (µ,Σ):

z ∼ N (0, I) gθ(z) x ∼ N (µ,Σ)

Note: Exact solution is x = gθ(z) = µ+ Lz where L is the Cholesky
decomposition of Σ: Σ = LL⊤, lower triangular L.

Jonathon Hare Generative Models 9 / 32

Example: drawing samples from N (µ,Σ)

Consider a simple generator network with a single affine layer that
maps samples N (0, I) to N (µ,Σ):

z ∼ N (0, I) gθ(z) x ∼ N (µ,Σ)

Note: Exact solution is x = gθ(z) = µ+ Lz where L is the Cholesky
decomposition of Σ: Σ = LL⊤, lower triangular L.

Jonathon Hare Generative Models 9 / 32

Generating samples

More generally, we can think of g as providing a nonlinear change of
variables that transforms a distribution over z into the desired distribution
over x:

pz(z) g(z) px(x)

For any invertible, differentiable, continuous g :

pz(z) = px(g(z))
∣∣∣∣det(∂g

∂z

)∣∣∣∣
Which implicitly imposes a probability distribution over x:

px(x) =
pz(g

−1(x))∣∣∣det(∂g
∂z

)∣∣∣
Note: usually use an indirect means of learning g rather than minimise
− log(p(x)) directly

Jonathon Hare Generative Models 10 / 32

Generating samples

More generally, we can think of g as providing a nonlinear change of
variables that transforms a distribution over z into the desired distribution
over x:

pz(z) g(z) px(x)

For any invertible, differentiable, continuous g :

pz(z) = px(g(z))
∣∣∣∣det(∂g

∂z

)∣∣∣∣
Which implicitly imposes a probability distribution over x:

px(x) =
pz(g

−1(x))∣∣∣det(∂g
∂z

)∣∣∣

Note: usually use an indirect means of learning g rather than minimise
− log(p(x)) directly

Jonathon Hare Generative Models 10 / 32

Generating samples

More generally, we can think of g as providing a nonlinear change of
variables that transforms a distribution over z into the desired distribution
over x:

pz(z) g(z) px(x)

For any invertible, differentiable, continuous g :

pz(z) = px(g(z))
∣∣∣∣det(∂g

∂z

)∣∣∣∣
Which implicitly imposes a probability distribution over x:

px(x) =
pz(g

−1(x))∣∣∣det(∂g
∂z

)∣∣∣
Note: usually use an indirect means of learning g rather than minimise
− log(p(x)) directly

Jonathon Hare Generative Models 10 / 32

Generating distributions

Rather than use g to provide a sample of x directly, we could instead
use g to define a conditional distribution over x , p(x |z)

For example, g might produce the parameters of a particular
distribution - e.g.:

means of Bernoulli
mean and variance of a Gaussian

The distribution over x is imposed by marginalising
z :p(x) = Ezp(x |z)

Jonathon Hare Generative Models 11 / 32

Generating distributions

Rather than use g to provide a sample of x directly, we could instead
use g to define a conditional distribution over x , p(x |z)

For example, g might produce the parameters of a particular
distribution - e.g.:

means of Bernoulli
mean and variance of a Gaussian

The distribution over x is imposed by marginalising
z :p(x) = Ezp(x |z)

Jonathon Hare Generative Models 11 / 32

Distributions vs Samples

In both cases (g generates samples and g generates distributions) we
can use the reparameterisation tricks we saw last lecture to train
models.

Generating distributions:

+ works for both continuous and discrete data
- need to specify the form of the output distribution

Generating samples:
+ works for continuous data

+ discrete data is recently possible - we need the STargmax

+ don’t need to specify the distribution in explicit form

Jonathon Hare Generative Models 12 / 32

Distributions vs Samples

In both cases (g generates samples and g generates distributions) we
can use the reparameterisation tricks we saw last lecture to train
models.

Generating distributions:

+ works for both continuous and discrete data
- need to specify the form of the output distribution

Generating samples:
+ works for continuous data

+ discrete data is recently possible - we need the STargmax

+ don’t need to specify the distribution in explicit form

Jonathon Hare Generative Models 12 / 32

Distributions vs Samples

In both cases (g generates samples and g generates distributions) we
can use the reparameterisation tricks we saw last lecture to train
models.

Generating distributions:

+ works for both continuous and discrete data
- need to specify the form of the output distribution

Generating samples:
+ works for continuous data

+ discrete data is recently possible - we need the STargmax

+ don’t need to specify the distribution in explicit form

Jonathon Hare Generative Models 12 / 32

Complexity of Generative Modelling

In classification both input and output are given

Optimisation only needs to learn the mapping

Generative modelling is more complex than classification because

learning requires optimizing intractable criteria
data does not specify both input z and output x of the generator
network
learning procedure needs to determine how to arrange z space in a
useful way and how to map z to x

Jonathon Hare Generative Models 13 / 32

Complexity of Generative Modelling

In classification both input and output are given

Optimisation only needs to learn the mapping

Generative modelling is more complex than classification because

learning requires optimizing intractable criteria
data does not specify both input z and output x of the generator
network
learning procedure needs to determine how to arrange z space in a
useful way and how to map z to x

Jonathon Hare Generative Models 13 / 32

Complexity of Generative Modelling

In classification both input and output are given

Optimisation only needs to learn the mapping

Generative modelling is more complex than classification because

learning requires optimizing intractable criteria

data does not specify both input z and output x of the generator
network
learning procedure needs to determine how to arrange z space in a
useful way and how to map z to x

Jonathon Hare Generative Models 13 / 32

Complexity of Generative Modelling

In classification both input and output are given

Optimisation only needs to learn the mapping

Generative modelling is more complex than classification because

learning requires optimizing intractable criteria
data does not specify both input z and output x of the generator
network

learning procedure needs to determine how to arrange z space in a
useful way and how to map z to x

Jonathon Hare Generative Models 13 / 32

Complexity of Generative Modelling

In classification both input and output are given

Optimisation only needs to learn the mapping

Generative modelling is more complex than classification because

learning requires optimizing intractable criteria
data does not specify both input z and output x of the generator
network
learning procedure needs to determine how to arrange z space in a
useful way and how to map z to x

Jonathon Hare Generative Models 13 / 32

Variational Autoencoders

Jonathon Hare Generative Models 14 / 32

Variational Autoencoders (VAEs)

The Variational Autoencoder uses the following generative process to draw
samples:

z ∼ pmodel(z) pmodel(x |z ;θ) = pmodel(x ; gθ(z)) x ∼ pmodel(x |z ;θ)

The learning problem is to find θ that maximises the probability of
each x in the training set under p(x) =

∫
p(x |z ;θ)p(z)dz

pmodel(z) is most often chosen to be N (0, I)
pmodel(x |z) is chosen according to the data; typically Gaussian for
real-valued data (most often just predicting the means, with a fixed
diagonal covariance) or Bernoulli for binary data.

Intuition: we don’t exactly want to exactly create the training
examples; we want to create things like the training examples

Jonathon Hare Generative Models 15 / 32

Variational Autoencoders (VAEs)

Conceptually we can compute p(x) ≈ 1
n

∑n
i p(x |zi ;θ) for n samples

of z , {z1, . . . , zn} and just use gradient ascent to do the optimisation

This isn’t tractable in practice; n would need to be extremely big!

For most z , p(x |z) will be nearly zero, and hence contribute almost
nothing to our estimate of p(x)
The key idea behind the VAE is to learn to sample values of z that
are likely to have produced x , and compute p(x) just from those

Introduce a new function qϕ(z |x) which can take a value of x and
produce the distribution over z values that are likely to produce x .
The space of z values that are likely under q should be much smaller
than the space of than under prior p(z).
We can now compute Ez∼qϕp(x |z ;θ) easily

if the PDF q(z), is not N (0, I), then how does that help us optimize
p(x)?
and how does this expectation relate to p(x)?

Jonathon Hare Generative Models 16 / 32

Variational Autoencoders (VAEs)

Conceptually we can compute p(x) ≈ 1
n

∑n
i p(x |zi ;θ) for n samples

of z , {z1, . . . , zn} and just use gradient ascent to do the optimisation

This isn’t tractable in practice; n would need to be extremely big!

For most z , p(x |z) will be nearly zero, and hence contribute almost
nothing to our estimate of p(x)
The key idea behind the VAE is to learn to sample values of z that
are likely to have produced x , and compute p(x) just from those

Introduce a new function qϕ(z |x) which can take a value of x and
produce the distribution over z values that are likely to produce x .
The space of z values that are likely under q should be much smaller
than the space of than under prior p(z).
We can now compute Ez∼qϕp(x |z ;θ) easily

if the PDF q(z), is not N (0, I), then how does that help us optimize
p(x)?
and how does this expectation relate to p(x)?

Jonathon Hare Generative Models 16 / 32

Variational Autoencoders (VAEs)

Conceptually we can compute p(x) ≈ 1
n

∑n
i p(x |zi ;θ) for n samples

of z , {z1, . . . , zn} and just use gradient ascent to do the optimisation

This isn’t tractable in practice; n would need to be extremely big!

For most z , p(x |z) will be nearly zero, and hence contribute almost
nothing to our estimate of p(x)

The key idea behind the VAE is to learn to sample values of z that
are likely to have produced x , and compute p(x) just from those

Introduce a new function qϕ(z |x) which can take a value of x and
produce the distribution over z values that are likely to produce x .
The space of z values that are likely under q should be much smaller
than the space of than under prior p(z).
We can now compute Ez∼qϕp(x |z ;θ) easily

if the PDF q(z), is not N (0, I), then how does that help us optimize
p(x)?
and how does this expectation relate to p(x)?

Jonathon Hare Generative Models 16 / 32

Variational Autoencoders (VAEs)

Conceptually we can compute p(x) ≈ 1
n

∑n
i p(x |zi ;θ) for n samples

of z , {z1, . . . , zn} and just use gradient ascent to do the optimisation

This isn’t tractable in practice; n would need to be extremely big!

For most z , p(x |z) will be nearly zero, and hence contribute almost
nothing to our estimate of p(x)
The key idea behind the VAE is to learn to sample values of z that
are likely to have produced x , and compute p(x) just from those

Introduce a new function qϕ(z |x) which can take a value of x and
produce the distribution over z values that are likely to produce x .
The space of z values that are likely under q should be much smaller
than the space of than under prior p(z).
We can now compute Ez∼qϕp(x |z ;θ) easily

if the PDF q(z), is not N (0, I), then how does that help us optimize
p(x)?
and how does this expectation relate to p(x)?

Jonathon Hare Generative Models 16 / 32

Variational Autoencoders (VAEs)

Conceptually we can compute p(x) ≈ 1
n

∑n
i p(x |zi ;θ) for n samples

of z , {z1, . . . , zn} and just use gradient ascent to do the optimisation

This isn’t tractable in practice; n would need to be extremely big!

For most z , p(x |z) will be nearly zero, and hence contribute almost
nothing to our estimate of p(x)
The key idea behind the VAE is to learn to sample values of z that
are likely to have produced x , and compute p(x) just from those

Introduce a new function qϕ(z |x) which can take a value of x and
produce the distribution over z values that are likely to produce x .

The space of z values that are likely under q should be much smaller
than the space of than under prior p(z).
We can now compute Ez∼qϕp(x |z ;θ) easily

if the PDF q(z), is not N (0, I), then how does that help us optimize
p(x)?
and how does this expectation relate to p(x)?

Jonathon Hare Generative Models 16 / 32

Variational Autoencoders (VAEs)

Conceptually we can compute p(x) ≈ 1
n

∑n
i p(x |zi ;θ) for n samples

of z , {z1, . . . , zn} and just use gradient ascent to do the optimisation

This isn’t tractable in practice; n would need to be extremely big!

For most z , p(x |z) will be nearly zero, and hence contribute almost
nothing to our estimate of p(x)
The key idea behind the VAE is to learn to sample values of z that
are likely to have produced x , and compute p(x) just from those

Introduce a new function qϕ(z |x) which can take a value of x and
produce the distribution over z values that are likely to produce x .
The space of z values that are likely under q should be much smaller
than the space of than under prior p(z).

We can now compute Ez∼qϕp(x |z ;θ) easily
if the PDF q(z), is not N (0, I), then how does that help us optimize
p(x)?
and how does this expectation relate to p(x)?

Jonathon Hare Generative Models 16 / 32

Variational Autoencoders (VAEs)

Conceptually we can compute p(x) ≈ 1
n

∑n
i p(x |zi ;θ) for n samples

of z , {z1, . . . , zn} and just use gradient ascent to do the optimisation

This isn’t tractable in practice; n would need to be extremely big!

For most z , p(x |z) will be nearly zero, and hence contribute almost
nothing to our estimate of p(x)
The key idea behind the VAE is to learn to sample values of z that
are likely to have produced x , and compute p(x) just from those

Introduce a new function qϕ(z |x) which can take a value of x and
produce the distribution over z values that are likely to produce x .
The space of z values that are likely under q should be much smaller
than the space of than under prior p(z).
We can now compute Ez∼qϕp(x |z ;θ) easily

if the PDF q(z), is not N (0, I), then how does that help us optimize
p(x)?
and how does this expectation relate to p(x)?

Jonathon Hare Generative Models 16 / 32

Variational Inference

Log-probability log p(x) = log

∫
p(x |z)p(z)dz

Proposal log p(x) = log

∫
p(x |z)p(z)q(z |x)

q(z |x)dz

Importance weight log p(x) = log

∫
p(x |z) p(z)

q(z |x)q(z |x)dz

Jensen’s inequality log p(x) ≥
∫

q(z |x) log
(
p(x |z) p(z)

q(z |x)

)
dz

Rearrange log p(x) ≥
∫

q(z |x) log p(x |z)dz −
∫
q(z |x) log q(z |x)

p(z)
dz

ELBO log p(x) ≥ Ez∼q(z|x) log p(x |z)− DKL(q(z |x)||p(z))

Jensen’s inequality: log
∫
p(x)g(x)dx ≥

∫
p(x) log g(x)dx

Log product rule: log(a · b) = log a+ log b
Log quotient rule: log(a/b) = log a− log b

Jonathon Hare Generative Models 17 / 32

Variational Inference

Log-probability log p(x) = log

∫
p(x |z)p(z)dz

Proposal log p(x) = log

∫
p(x |z)p(z)q(z |x)

q(z |x)dz

Importance weight log p(x) = log

∫
p(x |z) p(z)

q(z |x)q(z |x)dz

Jensen’s inequality log p(x) ≥
∫

q(z |x) log
(
p(x |z) p(z)

q(z |x)

)
dz

Rearrange log p(x) ≥
∫

q(z |x) log p(x |z)dz −
∫
q(z |x) log q(z |x)

p(z)
dz

ELBO log p(x) ≥ Ez∼q(z|x) log p(x |z)− DKL(q(z |x)||p(z))

Jensen’s inequality: log
∫
p(x)g(x)dx ≥

∫
p(x) log g(x)dx

Log product rule: log(a · b) = log a+ log b
Log quotient rule: log(a/b) = log a− log b

Jonathon Hare Generative Models 17 / 32

Variational Inference

Log-probability log p(x) = log

∫
p(x |z)p(z)dz

Proposal log p(x) = log

∫
p(x |z)p(z)q(z |x)

q(z |x)dz

Importance weight log p(x) = log

∫
p(x |z) p(z)

q(z |x)q(z |x)dz

Jensen’s inequality log p(x) ≥
∫

q(z |x) log
(
p(x |z) p(z)

q(z |x)

)
dz

Rearrange log p(x) ≥
∫

q(z |x) log p(x |z)dz −
∫
q(z |x) log q(z |x)

p(z)
dz

ELBO log p(x) ≥ Ez∼q(z|x) log p(x |z)− DKL(q(z |x)||p(z))

Jensen’s inequality: log
∫
p(x)g(x)dx ≥

∫
p(x) log g(x)dx

Log product rule: log(a · b) = log a+ log b
Log quotient rule: log(a/b) = log a− log b

Jonathon Hare Generative Models 17 / 32

Variational Inference

Log-probability log p(x) = log

∫
p(x |z)p(z)dz

Proposal log p(x) = log

∫
p(x |z)p(z)q(z |x)

q(z |x)dz

Importance weight log p(x) = log

∫
p(x |z) p(z)

q(z |x)q(z |x)dz

Jensen’s inequality log p(x) ≥
∫
q(z |x) log

(
p(x |z) p(z)

q(z |x)

)
dz

Rearrange log p(x) ≥
∫

q(z |x) log p(x |z)dz −
∫
q(z |x) log q(z |x)

p(z)
dz

ELBO log p(x) ≥ Ez∼q(z|x) log p(x |z)− DKL(q(z |x)||p(z))

Jensen’s inequality: log
∫
p(x)g(x)dx ≥

∫
p(x) log g(x)dx

Log product rule: log(a · b) = log a+ log b
Log quotient rule: log(a/b) = log a− log b

Jonathon Hare Generative Models 17 / 32

Variational Inference

Log-probability log p(x) = log

∫
p(x |z)p(z)dz

Proposal log p(x) = log

∫
p(x |z)p(z)q(z |x)

q(z |x)dz

Importance weight log p(x) = log

∫
p(x |z) p(z)

q(z |x)q(z |x)dz

Jensen’s inequality log p(x) ≥
∫
q(z |x) log

(
p(x |z) p(z)

q(z |x)

)
dz

Rearrange log p(x) ≥
∫
q(z |x) log p(x |z)dz −

∫
q(z |x) log q(z |x)

p(z)
dz

ELBO log p(x) ≥ Ez∼q(z|x) log p(x |z)− DKL(q(z |x)||p(z))

Jensen’s inequality: log
∫
p(x)g(x)dx ≥

∫
p(x) log g(x)dx

Log product rule: log(a · b) = log a+ log b
Log quotient rule: log(a/b) = log a− log b

Jonathon Hare Generative Models 17 / 32

Variational Inference

Log-probability log p(x) = log

∫
p(x |z)p(z)dz

Proposal log p(x) = log

∫
p(x |z)p(z)q(z |x)

q(z |x)dz

Importance weight log p(x) = log

∫
p(x |z) p(z)

q(z |x)q(z |x)dz

Jensen’s inequality log p(x) ≥
∫
q(z |x) log

(
p(x |z) p(z)

q(z |x)

)
dz

Rearrange log p(x) ≥
∫
q(z |x) log p(x |z)dz −

∫
q(z |x) log q(z |x)

p(z)
dz

ELBO log p(x) ≥ Ez∼q(z|x) log p(x |z)− DKL(q(z |x)||p(z))

Jensen’s inequality: log
∫
p(x)g(x)dx ≥

∫
p(x) log g(x)dx

Log product rule: log(a · b) = log a+ log b
Log quotient rule: log(a/b) = log a− log b

Jonathon Hare Generative Models 17 / 32

The Evidence LOwer Bound (ELBO) / variational lower
bound

The ELBO expression we just derived is a cornerstone of variational
inference:

L(q) = Ez∼q(z |x) log pmodel(x |z)− DKL(q(z |x)||pmodel(z))

≤ log pmodel(x)

The expectation term looks just like a reconstruction log-likelihood
found in normal autoencoders

If pmodel(x |z) is Gaussian, then this is MSE between the true training
x and a generated sample computed from z , averaged across many z ’s
(each a function of x)

The KL term is forcing the approximate posterior q(z |x) towards the
prior pmodel(z).

Jonathon Hare Generative Models 18 / 32

Why is it called an autoencoder?

q(z |x) is referred to as an encoder; it’s used to take x and turn it
into a z

pmodel(x ; gθ(z)) is referred to as a decoder network; it takes a z and
decodes it into a target x
From a practical standpoint, a VAE is a normal autoencoder with two
key differences:

the encoder generates a distribution that must be sampled

the network produces the sufficient statistics of the distribution (e.g.
means and diagonal co-variances for a typical VAE with Gaussian
q(z |x))

the decoder generates a distribution, which, during training the NLL of
the true data x is compared against

Jonathon Hare Generative Models 19 / 32

Why is it called an autoencoder?

q(z |x) is referred to as an encoder; it’s used to take x and turn it
into a z
pmodel(x ; gθ(z)) is referred to as a decoder network; it takes a z and
decodes it into a target x

From a practical standpoint, a VAE is a normal autoencoder with two
key differences:

the encoder generates a distribution that must be sampled

the network produces the sufficient statistics of the distribution (e.g.
means and diagonal co-variances for a typical VAE with Gaussian
q(z |x))

the decoder generates a distribution, which, during training the NLL of
the true data x is compared against

Jonathon Hare Generative Models 19 / 32

Why is it called an autoencoder?

q(z |x) is referred to as an encoder; it’s used to take x and turn it
into a z
pmodel(x ; gθ(z)) is referred to as a decoder network; it takes a z and
decodes it into a target x
From a practical standpoint, a VAE is a normal autoencoder with two
key differences:

the encoder generates a distribution that must be sampled

the network produces the sufficient statistics of the distribution (e.g.
means and diagonal co-variances for a typical VAE with Gaussian
q(z |x))

the decoder generates a distribution, which, during training the NLL of
the true data x is compared against

Jonathon Hare Generative Models 19 / 32

VAE: Diagram

Encoder
()

Decoder
()

Sample from

Encoder
()

Decoder
()

Sample from

*

+

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

want to optimize is:

EX⇠D [log P(X) � D [Q(z|X)kP(z|X)]] =

EX⇠D [Ez⇠Q [log P(X|z)] � D [Q(z|X)kP(z)]] .
(8)

If we take the gradient of this equation, the gradient symbol can be moved
into the expectations. Therefore, we can sample a single value of X and a
single value of z from the distribution Q(z|X), and compute the gradient of:

log P(X|z) � D [Q(z|X)kP(z)] . (9)

We can then average the gradient of this function over arbitrarily many
samples of X and z, and the result converges to the gradient of Equation 8.

There is, however, a significant problem with Equation 9. Ez⇠Q [log P(X|z)]
depends not just on the parameters of P, but also on the parameters of Q.
However, in Equation 9, this dependency has disappeared! In order to make
VAEs work, it’s essential to drive Q to produce codes for X that P can reliably
decode. To see the problem a different way, the network described in Equa-
tion 9 is much like the network shown in Figure 4 (left). The forward pass of
this network works fine and, if the output is averaged over many samples
of X and z, produces the correct expected value. However, we need to

10

From Carl Doersch’s Tutorial on VAEs - https://arxiv.org/pdf/1606.05908.pdf
Jonathon Hare Generative Models 20 / 32

VAE Models and Performance

VAEs can be used with any kind of data

the distributions and network architecture just needs to be set
accordingly
e.g. it’s common to use convolutions in the encoder and transpose
convolutions in (Gaussian) decoder for image data

VAEs have nice learning dynamics; they tend to be easy to optimise
with stable convergence

VAEs have a reputation for producing blurry reconstructions of
images

Not fully understood why, but most likely related to a side effect of
maximum-likelihood training

VAEs tend to only utilise a small subset of the dimensions of z
Pro: automatic latent variable selection
Con: better reconstructions should be possible given the available
code-space

Jonathon Hare Generative Models 21 / 32

VAE Models and Performance

VAEs can be used with any kind of data

the distributions and network architecture just needs to be set
accordingly
e.g. it’s common to use convolutions in the encoder and transpose
convolutions in (Gaussian) decoder for image data

VAEs have nice learning dynamics; they tend to be easy to optimise
with stable convergence

VAEs have a reputation for producing blurry reconstructions of
images

Not fully understood why, but most likely related to a side effect of
maximum-likelihood training

VAEs tend to only utilise a small subset of the dimensions of z
Pro: automatic latent variable selection
Con: better reconstructions should be possible given the available
code-space

Jonathon Hare Generative Models 21 / 32

VAE Models and Performance

VAEs can be used with any kind of data

the distributions and network architecture just needs to be set
accordingly
e.g. it’s common to use convolutions in the encoder and transpose
convolutions in (Gaussian) decoder for image data

VAEs have nice learning dynamics; they tend to be easy to optimise
with stable convergence

VAEs have a reputation for producing blurry reconstructions of
images

Not fully understood why, but most likely related to a side effect of
maximum-likelihood training

VAEs tend to only utilise a small subset of the dimensions of z
Pro: automatic latent variable selection
Con: better reconstructions should be possible given the available
code-space

Jonathon Hare Generative Models 21 / 32

VAE Models and Performance

VAEs can be used with any kind of data

the distributions and network architecture just needs to be set
accordingly
e.g. it’s common to use convolutions in the encoder and transpose
convolutions in (Gaussian) decoder for image data

VAEs have nice learning dynamics; they tend to be easy to optimise
with stable convergence

VAEs have a reputation for producing blurry reconstructions of
images

Not fully understood why, but most likely related to a side effect of
maximum-likelihood training

VAEs tend to only utilise a small subset of the dimensions of z
Pro: automatic latent variable selection
Con: better reconstructions should be possible given the available
code-space

Jonathon Hare Generative Models 21 / 32

Reconstructions Example

Jonathon Hare Generative Models 22 / 32

Sampling Example

Jonathon Hare Generative Models 23 / 32

Generative Adversarial Networks

Jonathon Hare Generative Models 24 / 32

Generative Adversarial Networks (GANs)

New (old?!1) method of training deep generative models

Idea: pitch a generator and a discriminator against each other

Generator tries to draw samples from p(x)
Discriminator tries to tell if sample came from the generator (fake) or
the real world

Both discriminator and generator are deep networks (differentiable
functions)

LeCun quote ‘GANs, the most interesting idea in the last ten years in
machine learning’

1c.f. Schmidhuber
Jonathon Hare Generative Models 25 / 32

Generative Adversarial Networks (GANs)

New (old?!1) method of training deep generative models

Idea: pitch a generator and a discriminator against each other

Generator tries to draw samples from p(x)
Discriminator tries to tell if sample came from the generator (fake) or
the real world

Both discriminator and generator are deep networks (differentiable
functions)

LeCun quote ‘GANs, the most interesting idea in the last ten years in
machine learning’

1c.f. Schmidhuber
Jonathon Hare Generative Models 25 / 32

Generative Adversarial Networks (GANs)

New (old?!1) method of training deep generative models

Idea: pitch a generator and a discriminator against each other

Generator tries to draw samples from p(x)
Discriminator tries to tell if sample came from the generator (fake) or
the real world

Both discriminator and generator are deep networks (differentiable
functions)

LeCun quote ‘GANs, the most interesting idea in the last ten years in
machine learning’

1c.f. Schmidhuber
Jonathon Hare Generative Models 25 / 32

Generative Adversarial Networks (GANs)

New (old?!1) method of training deep generative models

Idea: pitch a generator and a discriminator against each other

Generator tries to draw samples from p(x)
Discriminator tries to tell if sample came from the generator (fake) or
the real world

Both discriminator and generator are deep networks (differentiable
functions)

LeCun quote ‘GANs, the most interesting idea in the last ten years in
machine learning’

1c.f. Schmidhuber
Jonathon Hare Generative Models 25 / 32

Aside: Adversarial Learning vs. Adversarial Examples

The approach of GANs is called adversarial since the two networks have
antagonistic objectives.

This is not to be confused with adversarial examples in machine learning.

See these two papers for more details:
https://arxiv.org/pdf/1412.6572.pdf

https://arxiv.org/pdf/1312.6199.pdf

Jonathon Hare Generative Models 26 / 32

https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1312.6199.pdf

Generative adversarial networks (conceptual)

Generator

Real world
images

Discriminator

Real

Lo
ss

La
te

nt
 r

an
d

o
m

 v
ar

ia
b

le

Sample

Sample

Fake

5

Picture Credit: Xavier Giro-i-Nieto
Jonathon Hare Generative Models 27 / 32

More Formally

The generator
x = g(z)

is trained so that it gets a random input z ∈ Rn from a distribution
(typically N (0, I) or U(0, I)) and produces a sample x ∈ Rd following
the data distribution as output (ideally). Usually n << d .

The discriminator
y = d(x)

gets a sample x as input and predicts a probability y ∈ [0, 1] (or
real-valued logit of a Bernoulli distribution) determining if it is real or
fake.

Jonathon Hare Generative Models 28 / 32

More Practically

Training a standard GAN is difficult and often results in two
undesirable behaviours

Oscillations without convergence. No guarantee that the loss will
actually decrease...

It has been shown that a GAN has saddle-point solution, rather than a
local minima.

The mode collapse problem, when the generator models very well a
small sub-population, concentrating on a few modes.

Additionally, performance is hard to assess and often boils down to
heuristic observations.

Jonathon Hare Generative Models 29 / 32

Deep Convolutional Generative Adversarial Networks
(DCGANs)

Motivates the use of GANS
to learn reusable feature
representations from large
unlabelled datasets.

GANs known to be unstable
to train, often resulting in
generators that produce
“nonsensical outputs”.

Model exploration to identify
architectures that result in
stable training across
datasets with higher
resolution and deeper
models.

Jonathon Hare Generative Models 30 / 32

Architecture Guidelines for Stable DCGAN

Replace pooling layers with strided convolutions in the discriminator
and fractional-strided (transpose) convolutions in the generator.

This will allow the network to learn its own spatial downsampling.

Use batchnorm in both the generator and the discriminator.

This helps deal with training problems due to poor initialisation and
helps the gradient flow.

Eliminate fully connected hidden layers for deeper architectures.

Use ReLU activation in the generator for all layers except for the
output, which uses tanh.

Use LeakyReLU activation in the discriminator for all layers.

Jonathon Hare Generative Models 31 / 32

Architecture Guidelines for Stable DCGAN

Replace pooling layers with strided convolutions in the discriminator
and fractional-strided (transpose) convolutions in the generator.

This will allow the network to learn its own spatial downsampling.

Use batchnorm in both the generator and the discriminator.

This helps deal with training problems due to poor initialisation and
helps the gradient flow.

Eliminate fully connected hidden layers for deeper architectures.

Use ReLU activation in the generator for all layers except for the
output, which uses tanh.

Use LeakyReLU activation in the discriminator for all layers.

Jonathon Hare Generative Models 31 / 32

Architecture Guidelines for Stable DCGAN

Replace pooling layers with strided convolutions in the discriminator
and fractional-strided (transpose) convolutions in the generator.

This will allow the network to learn its own spatial downsampling.

Use batchnorm in both the generator and the discriminator.

This helps deal with training problems due to poor initialisation and
helps the gradient flow.

Eliminate fully connected hidden layers for deeper architectures.

Use ReLU activation in the generator for all layers except for the
output, which uses tanh.

Use LeakyReLU activation in the discriminator for all layers.

Jonathon Hare Generative Models 31 / 32

Architecture Guidelines for Stable DCGAN

Replace pooling layers with strided convolutions in the discriminator
and fractional-strided (transpose) convolutions in the generator.

This will allow the network to learn its own spatial downsampling.

Use batchnorm in both the generator and the discriminator.

This helps deal with training problems due to poor initialisation and
helps the gradient flow.

Eliminate fully connected hidden layers for deeper architectures.

Use ReLU activation in the generator for all layers except for the
output, which uses tanh.

Use LeakyReLU activation in the discriminator for all layers.

Jonathon Hare Generative Models 31 / 32

Architecture Guidelines for Stable DCGAN

Replace pooling layers with strided convolutions in the discriminator
and fractional-strided (transpose) convolutions in the generator.

This will allow the network to learn its own spatial downsampling.

Use batchnorm in both the generator and the discriminator.

This helps deal with training problems due to poor initialisation and
helps the gradient flow.

Eliminate fully connected hidden layers for deeper architectures.

Use ReLU activation in the generator for all layers except for the
output, which uses tanh.

Use LeakyReLU activation in the discriminator for all layers.

Jonathon Hare Generative Models 31 / 32

Summary

Generative modelling is a massive field with a long history

Differentiable generators have had a profound impact in making
models that work with real data at scale

VAEs and GANs are currently the most popular approaches to
training generators for spatial data

We’ve only scratched the surface of generative modelling
Auto-regressive approaches are popular for sequences (e.g. language
modelling).

But also for images (e.g. PixelRNN, PixelCNN)

typically RNN-based
but not necessarily - e.g. WaveNet is a convolutional auto-regressive
generative model

Jonathon Hare Generative Models 32 / 32

	Generative Modelling and Differentiable Generator Networks
	Variational Autoencoders
	Generative Adversarial Networks

