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A lot of the ideas in this lecture come from Andrej Karpathy's blog post on backprop
(https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b) and his CS231n Lecture Notes
(http://cs231n.github.io/optimization-2/)

(B viceEcsuos
&) Awesome new work from some of our people, welldone to
- and Professor Adam Priigel-Bennatt! Thanks for the mention

% Andrej Karpathy @

Deep Set Prediction Networks arxiv.org/abs/1906.06565 interesting;
e now have a ot of effective encoders for objects, sequences, sets,
graphs etc., but decoders for sets are tricky. Imo this is holding back
object detection, preventing end-to-end-ness and demanding nms
(ew).
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https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
http://cs231n.github.io/optimization-2/

A quick look at an MLP again
The chain rule (again)

Uninititive gradient effects

A closer look at basic stochastic gradient descent algorithms
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The unbiased Multilayer Perceptron (again)...

Input Hidden Output
layer layer layer

Without loss of generality, we can write the above as:
y = g(f(x; W), W) = g(WBf(Whx))

where f and g are activation functions.
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Gradients of our simple unbiased MLP

@ Let’s assume MSE Loss

Cuse(3,y) = 11§ — ylI3
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Gradients of our simple unbiased MLP

Let's assume MSE Loss

Cuse(3,y) = 11§ — ylI3

What are the gradients?

V- Luse(g(WPF(WWx)), y)

Clearly we need to apply the chain rule (vector form) multiple times
We could do this by hand
(But we're not that crazy!)
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Let's go back to a simpler expression

f(x,y,2) = (x+y)z
= gz where g = (x + y)
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Let's go back to a simpler expression

f(x,y,z)=(x+y)z
= qz where g = (x + y)

Clearly the partial derivatives of the subexpressions are trivial:

0f/0z=q 0f/0q =z
dq/0x =1 0q/dy =1

and the chain rule tells us how to combine these:

Of JOx = 0f /0q - 0q/0x = z
Of /|0y = 0f /0q - 0q/dy = z

SO v[x,y,z]f = [z,2,4]
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A computational graph perspective

f(x,y,2) = (x+y)z
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An intuition of the chain rule

@ Notice how every operation in the computational graph given its
inputs can immediately compute two things:

@ its output value
@ the local gradient of its inputs with respect to its output value
@ The chain rule tells us literally that each operation should take its
local gradients and multiply them by the gradient that flows
backwards into it
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This is backpropagation

@ The backprop algorithm is just the idea that you can perform the
forward pass (computing and caching the local gradients as you go),

@ and then perform a backward pass to compute the total gradient by
applying the chain rule and re-utilising the cached local gradients
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This is backpropagation

@ The backprop algorithm is just the idea that you can perform the
forward pass (computing and caching the local gradients as you go),

@ and then perform a backward pass to compute the total gradient by
applying the chain rule and re-utilising the cached local gradients

@ Backprop is just another name for ‘Reverse Mode Automatic
Differentiation’...

Jonathon Hare Backpropagation 9/13



Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.
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Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.
@ The gradients are clearly 9f /0b = a and 0f /0a = b.

e (in a computational graph these would be the local gradients w.r.t the
inputs)

e If ais large and b is tiny the gradient assigned to b will be large, and

the gradient to a small.

e This has implications for e.g. linear classifiers (w '

perform many multiplications

x;) where you

o the magnitude of the gradient is directly proportional to the magnitude
of the data

e multiply x; by 1000, and the gradients also increase by 1000

o if you don’t lower the learning rate to compensate your model might
not learn

e Hence you need to always pay attention to data normalisation!
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Unintuitive effects Il: vanishing gradients of the sigmoid

@ It used to be popular to use sigmoids (or tanh) in the hidden layers...
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Unintuitive effects Il: vanishing gradients of the sigmoid

@ It used to be popular to use sigmoids (or tanh) in the hidden layers...
e Gradient of o(x) = o(x)(1 — o(x))
@ Thus as part of a larger network where this is the local gradient, if x

is large (+ve or -ve), then all gradients backwards from this point will
be zero due to multiplication of the chain rule

o Why might x be large?
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Unintuitive effects Il: vanishing gradients of the sigmoid

It used to be popular to use sigmoids (or tanh) in the hidden layers...
Gradient of o(x) = o(x)(1 — o(x))
Thus as part of a larger network where this is the local gradient, if x

is large (+ve or -ve), then all gradients backwards from this point will
be zero due to multiplication of the chain rule

o Why might x be large?

e Maximum gradient is achieved when x =0 (o(x) = 0.5, dx = 0.25)

e This means that the maximum gradient that can flow out of a sigmoid
will be a quarter of the input gradient

o What's the implication of this in a deep network with sigmoid
activations?
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Unintuitive effects Ill: dying ReLUs

@ Modern networks tend to use RelLUs
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Unintuitive effects Ill: dying ReLUs

@ Modern networks tend to use RelLUs

@ Gradient is 1 for x > 0 and 0 otherwise
o Consider ReLU(w " x)

o What happens if w is initialised badly?
e What happens if w receives an update that means that w'x < 0V x?
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Unintuitive effects Ill: dying ReLUs

Modern networks tend to use RelLUs

Gradient is 1 for x > 0 and 0 otherwise
Consider ReLU(w " x)

o What happens if w is initialised badly?

e What happens if w receives an update that means that w'x < 0V x?
These are dead RelUs - ones that never fire for all training data

e Sometimes you can find that you have a large fraction of these

o if you get them from the beginning, check weight initialisation and
data normalisation

e if they're appearing during training, maybe A is too big?
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Unintuitive effects IV: Exploding gradients in recurrent

networks

@ Recurrent networks apply a function recursively for some number of
timesteps
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@ Recurrent networks apply a function recursively for some number of
timesteps
@ Often this recursion involves a multiplication at each timestep, the
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Unintuitive effects IV: Exploding gradients in recurrent

networks

@ Recurrent networks apply a function recursively for some number of
timesteps
@ Often this recursion involves a multiplication at each timestep, the
gradients of which are all multiplied together because of the chain
rule...
o Consider z=al[°b
0oz 0if |b| <1
e z—oo0if |b>1
@ Same thing happens in the backward pass of an RNN (although with
matrices rather than scalars, so the reasoning applies to the largest
eigenvalue)
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