Make a
forward pass
before the
backward pass

Backpropagation: Understanding the implications of

the chain rule

Jonathon Hare
Vision, Learning and Control

University of Southampton

A lot of the ideas in this lecture come from Andrej Karpathy's blog post on backprop
(https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b) and his CS231n Lecture Notes
(http://cs231n.github.io/optimization-2/)

(B viceEcsuos
&) Awesome new work from some of our people, welldone to
- and Professor Adam Priigel-Bennatt! Thanks for the mention

% Andrej Karpathy @

Deep Set Prediction Networks arxiv.org/abs/1906.06565 interesting;
e now have a ot of effective encoders for objects, sequences, sets,
graphs etc., but decoders for sets are tricky. Imo this is holding back
object detection, preventing end-to-end-ness and demanding nms
(ew).

Jonathon Hare Backpropagation

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
http://cs231n.github.io/optimization-2/

A quick look at an MLP again
The chain rule (again)

Uninititive gradient effects

A closer look at basic stochastic gradient descent algorithms

Jonathon Hare Backpropagation 3/13

The unbiased Multilayer Perceptron (again)...

Input Hidden Output
layer layer layer

Without loss of generality, we can write the above as:
y = g(f(x; W), W) = g(WBf(Whx))

where f and g are activation functions.

Jonathon Hare Backpropagation

/13

Gradients of our simple unbiased MLP

@ Let’s assume MSE Loss

Cuse(3,y) = 11§ — ylI3

Jonathon Hare Backpropagation 5/13

Gradients of our simple unbiased MLP

@ Let’s assume MSE Loss

Cuse(3,y) = 11§ — ylI3

@ What are the gradients?

V- Luse(g(WPF(WWx)), y)

Jonathon Hare Backpropagation 5/13

Gradients of our simple unbiased MLP

@ Let’s assume MSE Loss

Cuse(3,y) = 11§ — ylI3

@ What are the gradients?
Vw-Luse(g(WAF(Whx)), y)

o Clearly we need to apply the chain rule (vector form) multiple times

Jonathon Hare Backpropagation 5/13

Gradients of our simple unbiased MLP

@ Let’s assume MSE Loss

Cuse(3,y) = 11§ — ylI3

@ What are the gradients?
Vw-Luse(g(WAF(Whx)), y)

o Clearly we need to apply the chain rule (vector form) multiple times
@ We could do this by hand

Jonathon Hare Backpropagation 5/13

Gradients of our simple unbiased MLP

Let's assume MSE Loss

Cuse(3,y) = 11§ — ylI3

What are the gradients?

V- Luse(g(WPF(WWx)), y)

Clearly we need to apply the chain rule (vector form) multiple times
We could do this by hand
(But we're not that crazy!)

Jonathon Hare Backpropagation 5/13

Let's go back to a simpler expression

f(x,y,2) = (x+y)z
= gz where g = (x + y)

Jonathon Hare Backpropagation 6/13

Let's go back to a simpler expression

f(x,y,2) = (x+y)z
= gz where g = (x + y)

Clearly the partial derivatives of the subexpressions are trivial:

0f/0z=q Of/0q=z
dq/0x =1 0q/dy =1

Jonathon Hare Backpropagation 6/13

Let's go back to a simpler expression

f(x,y,z)=(x+y)z
= qz where g = (x + y)

Clearly the partial derivatives of the subexpressions are trivial:

0f/0z=q 0f/0q =z
dq/0x =1 0q/dy =1

and the chain rule tells us how to combine these:

Of JOx = 0f /0q - 0q/0x = z
Of /|0y = 0f /0q - 0q/dy = z

Jonathon Hare Backpropagation 6/13

Let's go back to a simpler expression

f(x,y,z)=(x+y)z
= qz where g = (x + y)

Clearly the partial derivatives of the subexpressions are trivial:

0f/0z=q 0f/0q =z
dq/0x =1 0q/dy =1

and the chain rule tells us how to combine these:

Of JOx = 0f /0q - 0q/0x = z
Of /|0y = 0f /0q - 0q/dy = z

SO v[x,y,z]f = [z,2,4]

Jonathon Hare Backpropagation 6/13

A computational graph perspective

f(x,y,2) = (x+y)z

Jonathon Hare Backpropagation 7/13

An intuition of the chain rule

@ Notice how every operation in the computational graph given its
inputs can immediately compute two things:

@ its output value
@ the local gradient of its inputs with respect to its output value
@ The chain rule tells us literally that each operation should take its
local gradients and multiply them by the gradient that flows
backwards into it

Jonathon Hare Backpropagation 8/13

This is backpropagation

@ The backprop algorithm is just the idea that you can perform the
forward pass (computing and caching the local gradients as you go),

@ and then perform a backward pass to compute the total gradient by
applying the chain rule and re-utilising the cached local gradients

Jonathon Hare Backpropagation 9/13

This is backpropagation

@ The backprop algorithm is just the idea that you can perform the
forward pass (computing and caching the local gradients as you go),

@ and then perform a backward pass to compute the total gradient by
applying the chain rule and re-utilising the cached local gradients

@ Backprop is just another name for ‘Reverse Mode Automatic
Differentiation’...

Jonathon Hare Backpropagation 9/13

Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.

Jonathon Hare Backpropagation 10/13

Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.
@ The gradients are clearly 9f /0b = a and 0f /0a = b.

Jonathon Hare Backpropagation 10/13

Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.
@ The gradients are clearly 9f /0b = a and 0f /0a = b.

e (in a computational graph these would be the local gradients w.r.t the
inputs)

Jonathon Hare Backpropagation 10/13

Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.
@ The gradients are clearly 9f /0b = a and 0f /0a = b.
e (in a computational graph these would be the local gradients w.r.t the
inputs)
e If ais large and b is tiny the gradient assigned to b will be large, and
the gradient to a small.

Jonathon Hare Backpropagation 10/13

Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.
@ The gradients are clearly 9f /0b = a and 0f /0a = b.
e (in a computational graph these would be the local gradients w.r.t the
inputs)
e If ais large and b is tiny the gradient assigned to b will be large, and
the gradient to a small.

@ This has implications for e.g. linear classifiers (w
perform many multiplications

Tx;) where you

Jonathon Hare Backpropagation 10/13

Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.
@ The gradients are clearly 9f /0b = a and 0f /0a = b.
e (in a computational graph these would be the local gradients w.r.t the
inputs)

e If ais large and b is tiny the gradient assigned to b will be large, and
the gradient to a small.

@ This has implications for e.g. linear classifiers (w
perform many multiplications

o the magnitude of the gradient is directly proportional to the magnitude
of the data

Tx;) where you

Jonathon Hare Backpropagation 10/13

Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.
@ The gradients are clearly 9f /0b = a and 0f /0a = b.
e (in a computational graph these would be the local gradients w.r.t the
inputs)

e If ais large and b is tiny the gradient assigned to b will be large, and
the gradient to a small.

@ This has implications for e.g. linear classifiers (w
perform many multiplications

o the magnitude of the gradient is directly proportional to the magnitude
of the data
e multiply x; by 1000, and the gradients also increase by 1000

Tx;) where you

Jonathon Hare Backpropagation 10/13

Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.
@ The gradients are clearly 9f /0b = a and 0f /0a = b.

e (in a computational graph these would be the local gradients w.r.t the
inputs)
e If ais large and b is tiny the gradient assigned to b will be large, and
the gradient to a small.
@ This has implications for e.g. linear classifiers (w
perform many multiplications
o the magnitude of the gradient is directly proportional to the magnitude
of the data
e multiply x; by 1000, and the gradients also increase by 1000

o if you don’t lower the learning rate to compensate your model might
not learn

Tx;) where you

Jonathon Hare Backpropagation 10/13

Unintuitive effects |: Multiplication

o Consider the multiplication operation f(a, b) = a x b.
@ The gradients are clearly 9f /0b = a and 0f /0a = b.

e (in a computational graph these would be the local gradients w.r.t the
inputs)

e If ais large and b is tiny the gradient assigned to b will be large, and

the gradient to a small.

e This has implications for e.g. linear classifiers (w '

perform many multiplications

x;) where you

o the magnitude of the gradient is directly proportional to the magnitude
of the data

e multiply x; by 1000, and the gradients also increase by 1000

o if you don’t lower the learning rate to compensate your model might
not learn

e Hence you need to always pay attention to data normalisation!

Jonathon Hare Backpropagation 10/13

Unintuitive effects Il: vanishing gradients of the sigmoid

@ It used to be popular to use sigmoids (or tanh) in the hidden layers...

Jonathon Hare Backpropagation 11/13

Unintuitive effects Il: vanishing gradients of the sigmoid

@ It used to be popular to use sigmoids (or tanh) in the hidden layers...
e Gradient of o(x) = o(x)(1 — o(x))

Jonathon Hare Backpropagation 11/13

Unintuitive effects Il: vanishing gradients of the sigmoid

@ It used to be popular to use sigmoids (or tanh) in the hidden layers...
e Gradient of o(x) = o(x)(1 — o(x))
@ Thus as part of a larger network where this is the local gradient, if x

is large (+ve or -ve), then all gradients backwards from this point will
be zero due to multiplication of the chain rule

o Why might x be large?

Jonathon Hare Backpropagation 11/13

Unintuitive effects Il: vanishing gradients of the sigmoid

It used to be popular to use sigmoids (or tanh) in the hidden layers...
Gradient of o(x) = o(x)(1 — o(x))
Thus as part of a larger network where this is the local gradient, if x

is large (+ve or -ve), then all gradients backwards from this point will
be zero due to multiplication of the chain rule

o Why might x be large?
e Maximum gradient is achieved when x =0 (o(x) = 0.5, dx = 0.25)

Jonathon Hare Backpropagation 11/13

Unintuitive effects Il: vanishing gradients of the sigmoid

It used to be popular to use sigmoids (or tanh) in the hidden layers...
Gradient of o(x) = o(x)(1 — o(x))
Thus as part of a larger network where this is the local gradient, if x

is large (+ve or -ve), then all gradients backwards from this point will
be zero due to multiplication of the chain rule

o Why might x be large?

Maximum gradient is achieved when x =0 (o(x) = 0.5, dx = 0.25)

e This means that the maximum gradient that can flow out of a sigmoid
will be a quarter of the input gradient

Jonathon Hare Backpropagation 11/13

Unintuitive effects Il: vanishing gradients of the sigmoid

It used to be popular to use sigmoids (or tanh) in the hidden layers...
Gradient of o(x) = o(x)(1 — o(x))
Thus as part of a larger network where this is the local gradient, if x

is large (+ve or -ve), then all gradients backwards from this point will
be zero due to multiplication of the chain rule

o Why might x be large?

e Maximum gradient is achieved when x =0 (o(x) = 0.5, dx = 0.25)

e This means that the maximum gradient that can flow out of a sigmoid
will be a quarter of the input gradient

o What's the implication of this in a deep network with sigmoid
activations?

Jonathon Hare Backpropagation 11/13

Unintuitive effects Ill: dying ReLUs

@ Modern networks tend to use RelLUs

Jonathon Hare Backpropagation 12/13

Unintuitive effects Ill: dying ReLUs

@ Modern networks tend to use RelLUs

@ Gradient is 1 for x > 0 and 0 otherwise

Jonathon Hare Backpropagation 12/13

Unintuitive effects Ill: dying ReLUs

@ Modern networks tend to use RelLUs

@ Gradient is 1 for x > 0 and 0 otherwise
o Consider ReLU(w " x)

o What happens if w is initialised badly?
e What happens if w receives an update that means that w'x < 0V x?

Jonathon Hare Backpropagation 12/13

Unintuitive effects Ill: dying ReLUs

Modern networks tend to use RelLUs

Gradient is 1 for x > 0 and 0 otherwise
Consider ReLU(w " x)

o What happens if w is initialised badly?

e What happens if w receives an update that means that w'x < 0V x?
These are dead RelUs - ones that never fire for all training data

e Sometimes you can find that you have a large fraction of these

o if you get them from the beginning, check weight initialisation and
data normalisation

e if they're appearing during training, maybe A is too big?

Jonathon Hare Backpropagation 12/13

Unintuitive effects IV: Exploding gradients in recurrent

networks

@ Recurrent networks apply a function recursively for some number of
timesteps

Jonathon Hare Backpropagation 13/13

Unintuitive effects IV: Exploding gradients in recurrent

networks

@ Recurrent networks apply a function recursively for some number of
timesteps

@ Often this recursion involves a multiplication at each timestep, the
gradients of which are all multiplied together because of the chain
rule...

Jonathon Hare Backpropagation 13/13

Unintuitive effects IV: Exploding gradients in recurrent

networks

@ Recurrent networks apply a function recursively for some number of
timesteps

@ Often this recursion involves a multiplication at each timestep, the
gradients of which are all multiplied together because of the chain
rule...

o Consider z=al[°b

Jonathon Hare Backpropagation 13/13

Unintuitive effects IV: Exploding gradients in recurrent

networks

@ Recurrent networks apply a function recursively for some number of
timesteps
@ Often this recursion involves a multiplication at each timestep, the
gradients of which are all multiplied together because of the chain
rule...
o Consider z=al[°b
0oz 0if |b| <1

Jonathon Hare Backpropagation 13/13

Unintuitive effects IV: Exploding gradients in recurrent

networks

@ Recurrent networks apply a function recursively for some number of
timesteps
@ Often this recursion involves a multiplication at each timestep, the
gradients of which are all multiplied together because of the chain
rule...
o Consider z=al[°b
0oz 0if b <1
e z—oo0if |b>1

Jonathon Hare Backpropagation 13/13

Unintuitive effects IV: Exploding gradients in recurrent

networks

@ Recurrent networks apply a function recursively for some number of
timesteps
@ Often this recursion involves a multiplication at each timestep, the
gradients of which are all multiplied together because of the chain
rule...
o Consider z=al[°b
0oz 0if |b| <1
e z—oo0if |b>1
@ Same thing happens in the backward pass of an RNN (although with
matrices rather than scalars, so the reasoning applies to the largest
eigenvalue)

Jonathon Hare Backpropagation 13/13

