
Learn
Latent
Representations

Autoencoders and Self-supervised Learning

Jonathon Hare

Vision, Learning and Control
University of Southampton

Jonathon Hare Auto-encoders 2 / 19

Low Dimensional Representations

One of the common features of many of the deep learning models we
have looked at to this point is that they often try to reduce the
dimensionality of the input data in order to capture some kind of
underlying information.

A few lectures ago this was particularly evident when when we looked
at embedding models like word2vec which explictly try to capture
relationships in the data in a low dimensional ‘latent’ space.

Jonathon Hare Auto-encoders 3 / 19

Low Dimensional Representations

One of the common features of many of the deep learning models we
have looked at to this point is that they often try to reduce the
dimensionality of the input data in order to capture some kind of
underlying information.

A few lectures ago this was particularly evident when when we looked
at embedding models like word2vec which explictly try to capture
relationships in the data in a low dimensional ‘latent’ space.

Jonathon Hare Auto-encoders 3 / 19

Self-supervised Learning

Jonathon Hare Auto-encoders 4 / 19

Self-supervised Learning

The word2vec models are examples of self-supervised learning

CBOW learns to predict the focus word from the context words
Skip-gram learns to predict the context words from the focus word

Let’s now consider a different type self-supervised of task where we
want to learn a model that learns to copy its input to its output.

Jonathon Hare Auto-encoders 5 / 19

Self-supervised Learning

The word2vec models are examples of self-supervised learning

CBOW learns to predict the focus word from the context words

Skip-gram learns to predict the context words from the focus word

Let’s now consider a different type self-supervised of task where we
want to learn a model that learns to copy its input to its output.

Jonathon Hare Auto-encoders 5 / 19

Self-supervised Learning

The word2vec models are examples of self-supervised learning

CBOW learns to predict the focus word from the context words
Skip-gram learns to predict the context words from the focus word

Let’s now consider a different type self-supervised of task where we
want to learn a model that learns to copy its input to its output.

Jonathon Hare Auto-encoders 5 / 19

Self-supervised Learning

The word2vec models are examples of self-supervised learning

CBOW learns to predict the focus word from the context words
Skip-gram learns to predict the context words from the focus word

Let’s now consider a different type self-supervised of task where we
want to learn a model that learns to copy its input to its output.

Jonathon Hare Auto-encoders 5 / 19

Autoencoders

An autoencoder is a network that is trained to copy its input to its
output

Internally there is some hidden vector z that describes a code that
represents the input.
Conceptually the autoencoder consists of two parts:

The encoder z = f (x)
The decoder r = g(z)

and has loss that tries to minimise the reconstruction error (typically
SSE/MSE: ∥x − r∥22)

Jonathon Hare Auto-encoders 6 / 19

Autoencoders

An autoencoder is a network that is trained to copy its input to its
output

Internally there is some hidden vector z that describes a code that
represents the input.

Conceptually the autoencoder consists of two parts:

The encoder z = f (x)
The decoder r = g(z)

and has loss that tries to minimise the reconstruction error (typically
SSE/MSE: ∥x − r∥22)

Jonathon Hare Auto-encoders 6 / 19

Autoencoders

An autoencoder is a network that is trained to copy its input to its
output

Internally there is some hidden vector z that describes a code that
represents the input.
Conceptually the autoencoder consists of two parts:

The encoder z = f (x)
The decoder r = g(z)

and has loss that tries to minimise the reconstruction error (typically
SSE/MSE: ∥x − r∥22)

Jonathon Hare Auto-encoders 6 / 19

Autoencoders

An autoencoder is a network that is trained to copy its input to its
output

Internally there is some hidden vector z that describes a code that
represents the input.
Conceptually the autoencoder consists of two parts:

The encoder z = f (x)
The decoder r = g(z)

and has loss that tries to minimise the reconstruction error (typically
SSE/MSE: ∥x − r∥22)

Jonathon Hare Auto-encoders 6 / 19

Autoencoders

An autoencoder is a network that is trained to copy its input to its
output

Internally there is some hidden vector z that describes a code that
represents the input.
Conceptually the autoencoder consists of two parts:

The encoder z = f (x)
The decoder r = g(z)

and has loss that tries to minimise the reconstruction error (typically
SSE/MSE: ∥x − r∥22)

(Goodfellow 2016)

Structure of an Autoencoder

CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.

xx rr

hh

f g

Figure 14.1: The general structure of an autoencoder, mapping an input x to an output
(called reconstruction) r through an internal representation or code h. The autoencoder
has two components: the encoder f (mapping x to h) and the decoder g (mapping h to
r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the
training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (14.1)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-

503

Figure 14.1

Input

Hidden layer (code)

Reconstruction

z

Jonathon Hare Auto-encoders 6 / 19

Autoencoder constraints

Clearly a linear autoencoder with a sufficient number of weights (e.g.
if the dimension of z was greater than or equal to that of x) could
learn set g(f (x)) = x everywhere, but this obviously wouldn’t be
useful!

In practice we apply restrictions1 to stop this happening.

The objective is to use these restrictions to force the autoencoder to
learn useful properties of the data.

1these are ‘inductive biases’ and the ‘innate priors’ of the model and learning algorithm
Jonathon Hare Auto-encoders 7 / 19

Autoencoder constraints

Clearly a linear autoencoder with a sufficient number of weights (e.g.
if the dimension of z was greater than or equal to that of x) could
learn set g(f (x)) = x everywhere, but this obviously wouldn’t be
useful!

In practice we apply restrictions1 to stop this happening.

The objective is to use these restrictions to force the autoencoder to
learn useful properties of the data.

1these are ‘inductive biases’ and the ‘innate priors’ of the model and learning algorithm
Jonathon Hare Auto-encoders 7 / 19

Undercomplete Autoencoders

Undercomplete autoencoders have dim(z) << dim(x).
This forces the encoder to learn a compressed representation of the
input.

The representation will capture the most salient features of the input
data.

Jonathon Hare Auto-encoders 8 / 19

Undercomplete Autoencoders — Linear

Consider the single-hidden layer linear autoencoder network given by:

z = Wex + be

r = Wdz + bd

where x ∈ Rn, z ∈ Rm and m < n.

With the MSE loss, this autoencoder will learn to span the same subspace
as PCA for a given set of training data.

Note that the autoencoder weights are not however constrained to be
orthogonal (like they would be in PCA)

Jonathon Hare Auto-encoders 9 / 19

Undercomplete Autoencoders — Linear

Consider the single-hidden layer linear autoencoder network given by:

z = Wex + be

r = Wdz + bd

where x ∈ Rn, z ∈ Rm and m < n.

With the MSE loss, this autoencoder will learn to span the same subspace
as PCA for a given set of training data.

Note that the autoencoder weights are not however constrained to be
orthogonal (like they would be in PCA)

Jonathon Hare Auto-encoders 9 / 19

Undercomplete Autoencoders — deeper and nonlinear

A linear autoencoder with a single hidden layer learns to map into the
same subspace as PCA.

Clearly, a deeper, linear autoencoder would also do the same thing.

What happens if you introduce non-linearity?

Interestingly, a single hidden layer network with non-linear activations
on the encoder (keeping the decoder linear) and MSE loss also just
learns to span the PCA subspace2!
But, if you add more hidden layers with non-linear activations (to
either the encoder, decoder or both) you can effectively perform a
powerful non-linear generalisation of PCA

2Bourlard, H., Kamp, Y. Auto-association by multilayer perceptrons and singular value
decomposition. Biol. Cybern. 59, 291–294 (1988).
https://doi.org/10.1007/BF00332918

Jonathon Hare Auto-encoders 10 / 19

Undercomplete Autoencoders — deeper and nonlinear

A linear autoencoder with a single hidden layer learns to map into the
same subspace as PCA.

Clearly, a deeper, linear autoencoder would also do the same thing.

What happens if you introduce non-linearity?

Interestingly, a single hidden layer network with non-linear activations
on the encoder (keeping the decoder linear) and MSE loss also just
learns to span the PCA subspace2!
But, if you add more hidden layers with non-linear activations (to
either the encoder, decoder or both) you can effectively perform a
powerful non-linear generalisation of PCA

2Bourlard, H., Kamp, Y. Auto-association by multilayer perceptrons and singular value
decomposition. Biol. Cybern. 59, 291–294 (1988).
https://doi.org/10.1007/BF00332918

Jonathon Hare Auto-encoders 10 / 19

Undercomplete Autoencoders — deeper and nonlinear

A linear autoencoder with a single hidden layer learns to map into the
same subspace as PCA.

Clearly, a deeper, linear autoencoder would also do the same thing.

What happens if you introduce non-linearity?

Interestingly, a single hidden layer network with non-linear activations
on the encoder (keeping the decoder linear) and MSE loss also just
learns to span the PCA subspace2!
But, if you add more hidden layers with non-linear activations (to
either the encoder, decoder or both) you can effectively perform a
powerful non-linear generalisation of PCA

2Bourlard, H., Kamp, Y. Auto-association by multilayer perceptrons and singular value
decomposition. Biol. Cybern. 59, 291–294 (1988).
https://doi.org/10.1007/BF00332918

Jonathon Hare Auto-encoders 10 / 19

Undercomplete Autoencoders — deeper and nonlinear

A linear autoencoder with a single hidden layer learns to map into the
same subspace as PCA.

Clearly, a deeper, linear autoencoder would also do the same thing.

What happens if you introduce non-linearity?

Interestingly, a single hidden layer network with non-linear activations
on the encoder (keeping the decoder linear) and MSE loss also just
learns to span the PCA subspace2!

But, if you add more hidden layers with non-linear activations (to
either the encoder, decoder or both) you can effectively perform a
powerful non-linear generalisation of PCA

2Bourlard, H., Kamp, Y. Auto-association by multilayer perceptrons and singular value
decomposition. Biol. Cybern. 59, 291–294 (1988).
https://doi.org/10.1007/BF00332918

Jonathon Hare Auto-encoders 10 / 19

Undercomplete Autoencoders — deeper and nonlinear

A linear autoencoder with a single hidden layer learns to map into the
same subspace as PCA.

Clearly, a deeper, linear autoencoder would also do the same thing.

What happens if you introduce non-linearity?

Interestingly, a single hidden layer network with non-linear activations
on the encoder (keeping the decoder linear) and MSE loss also just
learns to span the PCA subspace2!
But, if you add more hidden layers with non-linear activations (to
either the encoder, decoder or both) you can effectively perform a
powerful non-linear generalisation of PCA

2Bourlard, H., Kamp, Y. Auto-association by multilayer perceptrons and singular value
decomposition. Biol. Cybern. 59, 291–294 (1988).
https://doi.org/10.1007/BF00332918

Jonathon Hare Auto-encoders 10 / 19

Deep Autoencoders

Image taken from wikipedia
Jonathon Hare Auto-encoders 11 / 19

Deep Autoencoders - caveat

There is a slight catch: if you give the deep autoencoder network too
much capacity (too many weights) it will learn to perform the copying
task without extracting anything useful about the data.

Of course this means that will likely not generalise to unseen data.

Extreme example:

Consider a powerful encoder that maps x to z ∈ R1

Each training example x (i) could e.g. be mapped to i .
The decoder just needs to memorise the training examples so that it
can map back from i .

Jonathon Hare Auto-encoders 12 / 19

Deep Autoencoders - caveat

There is a slight catch: if you give the deep autoencoder network too
much capacity (too many weights) it will learn to perform the copying
task without extracting anything useful about the data.

Of course this means that will likely not generalise to unseen data.

Extreme example:

Consider a powerful encoder that maps x to z ∈ R1

Each training example x (i) could e.g. be mapped to i .
The decoder just needs to memorise the training examples so that it
can map back from i .

Jonathon Hare Auto-encoders 12 / 19

Deep Autoencoders - caveat

There is a slight catch: if you give the deep autoencoder network too
much capacity (too many weights) it will learn to perform the copying
task without extracting anything useful about the data.

Of course this means that will likely not generalise to unseen data.

Extreme example:

Consider a powerful encoder that maps x to z ∈ R1

Each training example x (i) could e.g. be mapped to i .
The decoder just needs to memorise the training examples so that it
can map back from i .

Jonathon Hare Auto-encoders 12 / 19

Deep Autoencoders - caveat

There is a slight catch: if you give the deep autoencoder network too
much capacity (too many weights) it will learn to perform the copying
task without extracting anything useful about the data.

Of course this means that will likely not generalise to unseen data.

Extreme example:

Consider a powerful encoder that maps x to z ∈ R1

Each training example x (i) could e.g. be mapped to i .
The decoder just needs to memorise the training examples so that it
can map back from i .

Jonathon Hare Auto-encoders 12 / 19

Deep Autoencoders - caveat

There is a slight catch: if you give the deep autoencoder network too
much capacity (too many weights) it will learn to perform the copying
task without extracting anything useful about the data.

Of course this means that will likely not generalise to unseen data.

Extreme example:

Consider a powerful encoder that maps x to z ∈ R1

Each training example x (i) could e.g. be mapped to i .

The decoder just needs to memorise the training examples so that it
can map back from i .

Jonathon Hare Auto-encoders 12 / 19

Deep Autoencoders - caveat

There is a slight catch: if you give the deep autoencoder network too
much capacity (too many weights) it will learn to perform the copying
task without extracting anything useful about the data.

Of course this means that will likely not generalise to unseen data.

Extreme example:

Consider a powerful encoder that maps x to z ∈ R1

Each training example x (i) could e.g. be mapped to i .
The decoder just needs to memorise the training examples so that it
can map back from i .

Jonathon Hare Auto-encoders 12 / 19

Undercomplete Autoencoders — Convolutional

Thus far, we only considered autoencoders with vector inputs/outputs
and fully-connected layers.

There is nothing stopping us using any other kinds of layers though...

If we’re working with image data, where we know that much of the
structure is ‘local’, then using convolutions in both the decoder makes
sense

Jonathon Hare Auto-encoders 13 / 19

Undercomplete Autoencoders — Convolutional

Thus far, we only considered autoencoders with vector inputs/outputs
and fully-connected layers.

There is nothing stopping us using any other kinds of layers though...

If we’re working with image data, where we know that much of the
structure is ‘local’, then using convolutions in both the decoder makes
sense

Jonathon Hare Auto-encoders 13 / 19

Convolutional Autoencoder

Jonathon Hare Auto-encoders 14 / 19

Regularised Autoencoders

Rather than (necessarily) forcing the hidden vector to have a lower
dimensionality than the input, we could instead utilise some form of
regularisation to force the network to learn interesting
representations...

Many ways to do this; let’s look at two of them:

Denoising Autoencoders
Sparse Autoencoders

Jonathon Hare Auto-encoders 15 / 19

Regularised Autoencoders

Rather than (necessarily) forcing the hidden vector to have a lower
dimensionality than the input, we could instead utilise some form of
regularisation to force the network to learn interesting
representations...

Many ways to do this; let’s look at two of them:

Denoising Autoencoders
Sparse Autoencoders

Jonathon Hare Auto-encoders 15 / 19

Denoising Autoencoders

Denoising autoencoders take a partially corrupted input and train to
recover the original undistorted input.

To train an autoencoder to denoise data, it is necessary to perform a
preliminary stochastic mapping to corrupt the data (x → x̃).

E.g. by adding Gaussian noise.

The loss is computed between the reconstruction (computed from the
noisy input) against the original noise-free data.

Jonathon Hare Auto-encoders 16 / 19

Denoising Autoencoders

Denoising autoencoders take a partially corrupted input and train to
recover the original undistorted input.

To train an autoencoder to denoise data, it is necessary to perform a
preliminary stochastic mapping to corrupt the data (x → x̃).

E.g. by adding Gaussian noise.

The loss is computed between the reconstruction (computed from the
noisy input) against the original noise-free data.

Jonathon Hare Auto-encoders 16 / 19

Denoising Autoencoders

Denoising autoencoders take a partially corrupted input and train to
recover the original undistorted input.

To train an autoencoder to denoise data, it is necessary to perform a
preliminary stochastic mapping to corrupt the data (x → x̃).

E.g. by adding Gaussian noise.

The loss is computed between the reconstruction (computed from the
noisy input) against the original noise-free data.

Jonathon Hare Auto-encoders 16 / 19

Sparse Autoencoders

In a sparse autoencoder, there can be more hidden units than inputs,
but only a small number of the hidden units are allowed to be active
at the same time.

This is simply achieved with a regularised loss function:
ℓ = ℓmse +Ω(z)
A popular choice that you’ve seen before would be to use an l1
penalty Ω(z) = λ

∑
i |zi |

this of course does have a slight problem... what is the derivative of
y = |x | with respect to x at x = 0?

Jonathon Hare Auto-encoders 17 / 19

Sparse Autoencoders

In a sparse autoencoder, there can be more hidden units than inputs,
but only a small number of the hidden units are allowed to be active
at the same time.

This is simply achieved with a regularised loss function:
ℓ = ℓmse +Ω(z)

A popular choice that you’ve seen before would be to use an l1
penalty Ω(z) = λ

∑
i |zi |

this of course does have a slight problem... what is the derivative of
y = |x | with respect to x at x = 0?

Jonathon Hare Auto-encoders 17 / 19

Sparse Autoencoders

In a sparse autoencoder, there can be more hidden units than inputs,
but only a small number of the hidden units are allowed to be active
at the same time.

This is simply achieved with a regularised loss function:
ℓ = ℓmse +Ω(z)
A popular choice that you’ve seen before would be to use an l1
penalty Ω(z) = λ

∑
i |zi |

this of course does have a slight problem... what is the derivative of
y = |x | with respect to x at x = 0?

Jonathon Hare Auto-encoders 17 / 19

Sparse Autoencoders

In a sparse autoencoder, there can be more hidden units than inputs,
but only a small number of the hidden units are allowed to be active
at the same time.

This is simply achieved with a regularised loss function:
ℓ = ℓmse +Ω(z)
A popular choice that you’ve seen before would be to use an l1
penalty Ω(z) = λ

∑
i |zi |

this of course does have a slight problem... what is the derivative of
y = |x | with respect to x at x = 0?

Jonathon Hare Auto-encoders 17 / 19

Autoencoder Applications

Any basic AE (or its variant) can be used to learn a compact
representation of data.

You can learn useful features from data without the need for labelled
data.
Denoising can help generalise over the test set since the data is
distorted by adding noise.

Pretraining networks

Anomaly Detection

Machine translation

Semantic segmentation

Jonathon Hare Auto-encoders 18 / 19

Autoencoder Applications

Any basic AE (or its variant) can be used to learn a compact
representation of data.

You can learn useful features from data without the need for labelled
data.

Denoising can help generalise over the test set since the data is
distorted by adding noise.

Pretraining networks

Anomaly Detection

Machine translation

Semantic segmentation

Jonathon Hare Auto-encoders 18 / 19

Autoencoder Applications

Any basic AE (or its variant) can be used to learn a compact
representation of data.

You can learn useful features from data without the need for labelled
data.
Denoising can help generalise over the test set since the data is
distorted by adding noise.

Pretraining networks

Anomaly Detection

Machine translation

Semantic segmentation

Jonathon Hare Auto-encoders 18 / 19

Autoencoder Applications

Any basic AE (or its variant) can be used to learn a compact
representation of data.

You can learn useful features from data without the need for labelled
data.
Denoising can help generalise over the test set since the data is
distorted by adding noise.

Pretraining networks

Anomaly Detection

Machine translation

Semantic segmentation

Jonathon Hare Auto-encoders 18 / 19

Autoencoder Applications

Any basic AE (or its variant) can be used to learn a compact
representation of data.

You can learn useful features from data without the need for labelled
data.
Denoising can help generalise over the test set since the data is
distorted by adding noise.

Pretraining networks

Anomaly Detection

Machine translation

Semantic segmentation

Jonathon Hare Auto-encoders 18 / 19

Autoencoder Applications

Any basic AE (or its variant) can be used to learn a compact
representation of data.

You can learn useful features from data without the need for labelled
data.
Denoising can help generalise over the test set since the data is
distorted by adding noise.

Pretraining networks

Anomaly Detection

Machine translation

Semantic segmentation

Jonathon Hare Auto-encoders 18 / 19

Autoencoder Applications

Any basic AE (or its variant) can be used to learn a compact
representation of data.

You can learn useful features from data without the need for labelled
data.
Denoising can help generalise over the test set since the data is
distorted by adding noise.

Pretraining networks

Anomaly Detection

Machine translation

Semantic segmentation

Jonathon Hare Auto-encoders 18 / 19

Beyond Deterministic Autoencoders: Stochastic Encoders
and Decoders

When we trained supervised classification networks we usually assume
that the network produces an output distribution p(y |x) and try to
minimise the negative log-likelihood − log(p(y |x)).

In a decoder of an autoencoder we could do the same thing and have
the decoder learn pdecoder (x |z) by minimising − log(p(x |z)).

A linear output layer could parameterise the mean of a Gaussian
distribution for real-valued x ; in this case the negative log likelihood
yields the MSE criterion.
Binary x would correspond to a Bernoulli distribution parameterised by
sigmoid outputs
Discrete (or categorical) x would correspond to a softmax distribution.

What about the encoder - could we make that output p(z |x)?

Jonathon Hare Auto-encoders 19 / 19

Beyond Deterministic Autoencoders: Stochastic Encoders
and Decoders

When we trained supervised classification networks we usually assume
that the network produces an output distribution p(y |x) and try to
minimise the negative log-likelihood − log(p(y |x)).
In a decoder of an autoencoder we could do the same thing and have
the decoder learn pdecoder (x |z) by minimising − log(p(x |z)).

A linear output layer could parameterise the mean of a Gaussian
distribution for real-valued x ; in this case the negative log likelihood
yields the MSE criterion.
Binary x would correspond to a Bernoulli distribution parameterised by
sigmoid outputs
Discrete (or categorical) x would correspond to a softmax distribution.

What about the encoder - could we make that output p(z |x)?

Jonathon Hare Auto-encoders 19 / 19

Beyond Deterministic Autoencoders: Stochastic Encoders
and Decoders

When we trained supervised classification networks we usually assume
that the network produces an output distribution p(y |x) and try to
minimise the negative log-likelihood − log(p(y |x)).
In a decoder of an autoencoder we could do the same thing and have
the decoder learn pdecoder (x |z) by minimising − log(p(x |z)).

A linear output layer could parameterise the mean of a Gaussian
distribution for real-valued x ; in this case the negative log likelihood
yields the MSE criterion.

Binary x would correspond to a Bernoulli distribution parameterised by
sigmoid outputs
Discrete (or categorical) x would correspond to a softmax distribution.

What about the encoder - could we make that output p(z |x)?

Jonathon Hare Auto-encoders 19 / 19

Beyond Deterministic Autoencoders: Stochastic Encoders
and Decoders

When we trained supervised classification networks we usually assume
that the network produces an output distribution p(y |x) and try to
minimise the negative log-likelihood − log(p(y |x)).
In a decoder of an autoencoder we could do the same thing and have
the decoder learn pdecoder (x |z) by minimising − log(p(x |z)).

A linear output layer could parameterise the mean of a Gaussian
distribution for real-valued x ; in this case the negative log likelihood
yields the MSE criterion.
Binary x would correspond to a Bernoulli distribution parameterised by
sigmoid outputs

Discrete (or categorical) x would correspond to a softmax distribution.

What about the encoder - could we make that output p(z |x)?

Jonathon Hare Auto-encoders 19 / 19

Beyond Deterministic Autoencoders: Stochastic Encoders
and Decoders

When we trained supervised classification networks we usually assume
that the network produces an output distribution p(y |x) and try to
minimise the negative log-likelihood − log(p(y |x)).
In a decoder of an autoencoder we could do the same thing and have
the decoder learn pdecoder (x |z) by minimising − log(p(x |z)).

A linear output layer could parameterise the mean of a Gaussian
distribution for real-valued x ; in this case the negative log likelihood
yields the MSE criterion.
Binary x would correspond to a Bernoulli distribution parameterised by
sigmoid outputs
Discrete (or categorical) x would correspond to a softmax distribution.

What about the encoder - could we make that output p(z |x)?

Jonathon Hare Auto-encoders 19 / 19

Beyond Deterministic Autoencoders: Stochastic Encoders
and Decoders

When we trained supervised classification networks we usually assume
that the network produces an output distribution p(y |x) and try to
minimise the negative log-likelihood − log(p(y |x)).
In a decoder of an autoencoder we could do the same thing and have
the decoder learn pdecoder (x |z) by minimising − log(p(x |z)).

A linear output layer could parameterise the mean of a Gaussian
distribution for real-valued x ; in this case the negative log likelihood
yields the MSE criterion.
Binary x would correspond to a Bernoulli distribution parameterised by
sigmoid outputs
Discrete (or categorical) x would correspond to a softmax distribution.

What about the encoder - could we make that output p(z |x)?

Jonathon Hare Auto-encoders 19 / 19

