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A little attention, please?

Jonathon Hare
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Core idea: Attending to part of a vector or tensor
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Static attention

X = softmax(W)X

or, factorised,

A

X = softmax(W;W;)X
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Dynamic Attention

A~

X = f(Z,0)X

or, factorised,

A

X = f(Zr,0r)g(Zg,0¢)X
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(Dynamic) Attention vs Self-attention

@ In regular attention, the weights applied to X are computed using
some additional auxiliary input (e.g. Z)
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(Dynamic) Attention vs Self-attention

@ In regular attention, the weights applied to X are computed using
some additional auxiliary input (e.g. Z)

@ Self-attention is only computed as a function of X (equivalently
Z=X)
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Dynamic Attention Example - Seq2Seq models
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https://link.springer.com/chapter/10.1007/978-3-319-73531-3_10
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Dynamic Attention Example - Seq2Seq models

ot = softmax([score(s;—1, 1), . .., score(s;_1, h)] ")

score(s, h) = v tanh (W[s; h])
c=of H where H=[hy, hy,..., h7]"

commonly known as “Additive Attention”, even though it is
based on concatenation!

Bahdanau, D., Cho, K. and Bengio, Y., 2014. Neural machine translation by jointly
learning to align and translate. ICLR 2015.
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Hard Attention vs Soft-attention

@ Soft-attention: use the softmax to smoothly attend mostly to one
thing (but capture a bit of everything else)

@ Hard attention: you specifically only attend to one thing: tricks (e.g.
policy gradients or ST operator) from last lecture required to learn
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Aside: Relaxation of a map/hashtable/dictionary
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Scaled dot-product attention

Attention(Q, K, V) = softma (QKT)V
| ) ) = X\ —F/—/—
Vi
@ In the previous Seq2Seq example we could replace additive attention
with scaled dot-product attention with something like @ = f(s¢—1),
K = g(H) and V = j(H).
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Scaled dot-product attention

Attention(Q, K, V) ft (QKT)V
ention(@Q, K, V) = softmax(——
vV dk

@ In the previous Seq2Seq example we could replace additive attention
with scaled dot-product attention with something like @ = f(s¢—1),
K = g(H) and V = j(H).

@ The scaling 1/+/d is just to improve learning (larger dy implies larger
dot products, which pushes further towards the flatter bit of the
softmax, and thus smaller gradients.)
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Scaled dot-product self-attention

.
SelfAttention(X) = softmax(———)V
(X) ( @)
Q=W,X
K=W.X
V=WwX
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Multi-head Attention

Scaled Dot-Product Attention Multi-Head Attention

MatMul
il

Scaled Dot-Product
Attention
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MultiHead(Q, K, V) = [heads; . ..; head,| W©°
head; = Attention(QWS, KW/, vwWY)

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and |. Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30.
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