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What and why?

 How might we train large models to do something useful with very little
labelled data (but lots of unlabelled data)?

 Can we somehow learn embeddings that are useable for downstream tasks?

e Self-supervised Learning might be the answer!



Basic idea: train model on the unlabelled data in some way (this is often
referred to as learning the "pretext task")
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Basic idea: then train a small task-specific network (and possibly fine-tune
encoder) on a small labelled dataset
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Types of SSL

* Auto-regressive SSL
* Auto-encoders

* Noisy/masked auto-encoders
* Contrastive SSL

e Non-contrastive SSL



Types of SSL

* Auto-regressive SSL Encoder-decoder

e Auto-encoders
* Noisy/masked auto-encoders
e Contrastive SSL Siamese

e Non-contrastive SSL



Auto-regressive SSL

Learning what comes next
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Auto-regressive Image Modelling
PixelRNN

Pixel Recurrent Neural Networks
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Autoencoders

Learning to compress / Learning to reconstruct

Reconstruction Loss



Autoencoders: Image Modelling

Masked Autoencoders
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Masked Autoencoders Are Scalable Vision Learners



Autoencoders: Text Modelling

BERT
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Autoencoders: Text Modelling
BERT
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Autoencoders: Text Modelling
BART

predict clean text
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BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension.



Exploiting Similarity
in the Embedding Space



Quick Nomenclature

Embedding space = Latent space = Representation Space*

*ish. Some of the papers we will discuss today use Representation Space to mean something very specific. Other use Embedding space to mean something specific



Similarity in the Embedding Space

Siamese Nets
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Signature Verification using a "Siamese"” Time Delay Neural Network




Can we turn this on its head?



Joint Embedding Learning

* |ntuition: Learn embeddings by training two identical networks to represent
similar inputs Iin similar ways



Joint Embedding Learning

* |ntuition: Learn embeddings by training two identical networks to represent
similar inputs in similar ways



Joint Embedding Learning

* |ntuition: Learn embeddings by training two identical networks to represent
similar inputs In similar ways



How can we get similar inputs in an unsupervised way?



Joint Embedding Learning

* |ntuition: Learn embeddings by training two identical networks to represent
similar inputs In similar ways
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Joint Embedding Learning

* |ntuition: Learn embeddings by training two identical networks to represent
similar inputs In similar ways
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Joint Embedding Learning

* |ntuition: Learn embeddings by training two identical networks to represent
similar inputs In similar ways
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Joint Embedding Learning

* |ntuition: Learn embeddings by training two identical networks to represent
similar inputs In similar ways
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Joint Embedding Learning

* |ntuition: Learn embeddings by training two identical networks to represent
similar inputs In similar ways
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What can go wrong?



Preventing Collapse

Pushing dissimilar embeddings away from each other

* Contrastive Learning

e |nformation Maximisation



Contrastive SSL

Learning by maximising similarity and differences

 Minimise representational distance between similar samples while maximising
distance between dissimilar samples



Contrastive SSL

Learning by maximising similarity and differences

 Minimise representational distance between similar samples while maximising
distance between dissimilar samples
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Contrastive SSL

Learning by maximising similarity and differences

 Minimise representational distance between similar samples while maximising
distance between dissimilar samples
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SIMCLR

Maximize agreement

Zi > Zj
MLP with
g(-) 9(*) one hidden layer
h; +— Representation — h;
A A
f() f()

"A Simple Framework for Contrastive Learning of Visual Representations”



SIMCLR

* |n an N-dimensional batch:
* Positive samples (similar): augmented versions of each image (2N total)

* Negative samples (different): all other samples in the batch

"A Simple Framework for Contrastive Learning of Visual Representations”



SIMCLR

* |n an N-dimensional batch:
. samples (similar): augmented versions of each image (2N total)

. samples (different): all other samples in the batch

"A Simple Framework for Contrastive Learning of Visual Representations”



SIMCLR

Maximize agreement cosine
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"A Simple Framework for Contrastive Learning of Visual Representations”



What can go wrong?



Contrastive SSL

Learning by maximising similarity and differences

 Minimise representational distance between similar samples while maximising
distance between dissimilar samples
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Contrastive SSL

Learning by maximising similarity and differences

 Minimise representational distance between similar samples while maximising
distance between dissimilar samples
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BYOL

No negative samples needed




BYOL

* |ntuition: Given the representation” of a sample, can we learn to predict what
the representation”™ of the augmented sample will look like?

* used in the generic sense here



Reminder

Maximize agreement
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"A Simple Framework for Contrastive Learning of Visual Representations”



Reminder

Maximize agreement _ _
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"A Simple Framework for Contrastive Learning of Visual Representations”



BYOL

No negative samples needed
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BYOL

No negative samples needed

Normalised

Representation Projection
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Information Maximisation



BarlowIwins
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"Barlow Twins: Self-Supervised Learning via Redundancy Reduction”
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BarlowIwins
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Distortions

* Defining rich enough augmentations is crucial for the success of such
methods

 What makes an augmentation "good"?
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