Phenomena in (Deep) Learning COMP6258

Deep Learning Theory Research with practical implications

Generalisation Deep Learning Theory Research with practical implications

Is overparametrisation good or bad? Why?

1000 classes

* UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION, Zhang et. al (2016)

ImageNet contains 1.2M training examples of size 224x224 split between

- 1000 classes
- receives one of the 1000 labels at random)

* UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION, Zhang et. al (2016)

ImageNet contains 1.2M training examples of size 224x224 split between

Suppose we randomise the labels of all the 1.2M training samples (each

- ImageNet contains 1.2M training examples of size 224x224 split between 1000 classes
- Suppose we randomise the labels of all the 1.2M training samples (each receives one of the 1000 labels at random)
- What training accuracy do you expect a model like AlexNet to be able to achieve if left to train to convergence? What about a ResNet-18?

* UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION, Zhang et. al (2016)

- ImageNet contains 1.2M training examples of size 224x224 split between 1000 classes
- Suppose we randomise the labels of all the 1.2M training samples (each receives one of the 1000 labels at random)
- What training accuracy do you expect a model like AlexNet to be able to achieve if left to train to convergence? What about a ResNet-18?

• Why?

* UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION, Zhang et. al (2016)

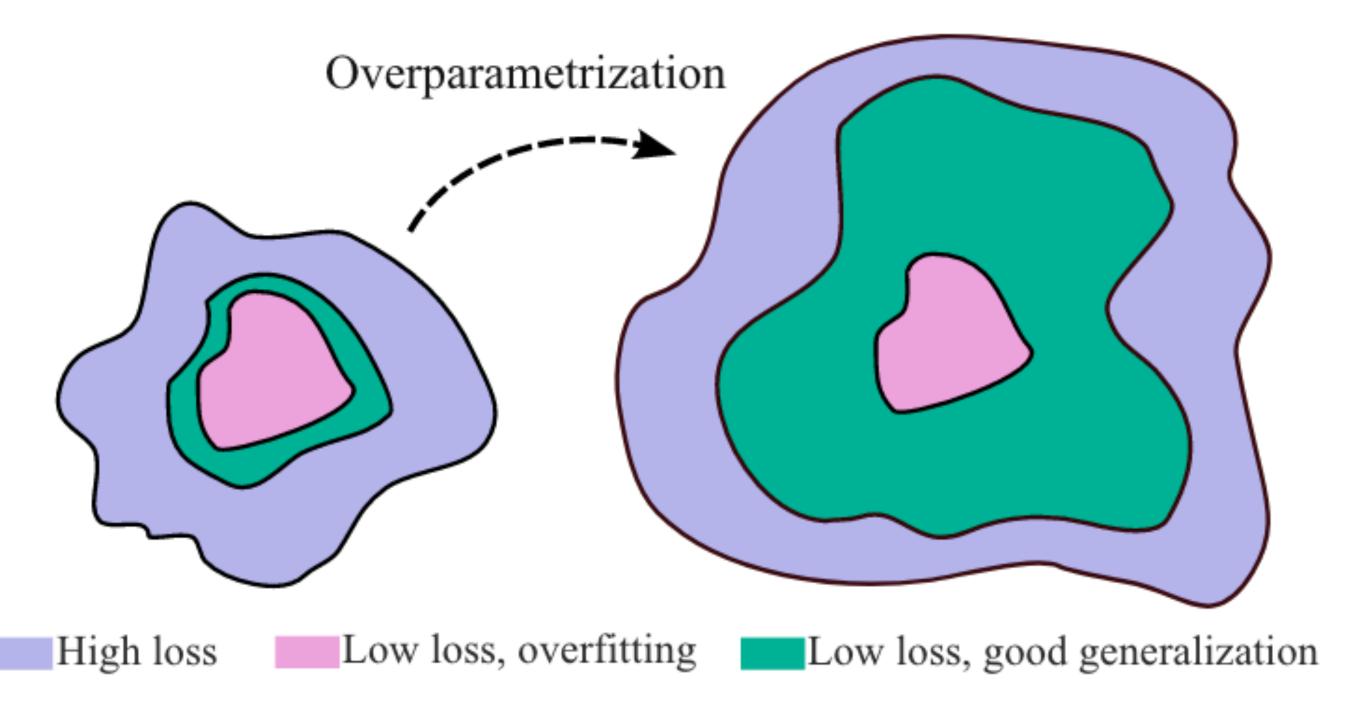
DNNs have the capacity to massively overfit.

DNNs have the capacity to massively overfit (think "memorise").

DNNs have the capacity to massively overfit (think "memorise").

DNNs have the capacity to massively overfit (think "memorise"). Why don't they?

More "Good" Solutions Exist



* Deep Learning is Not So Mysterious or Different, Wilson (2025)

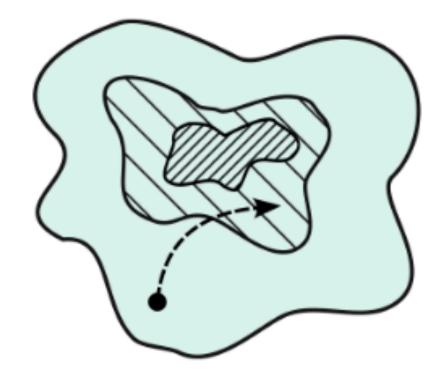
Inductive Biases

• Informally:

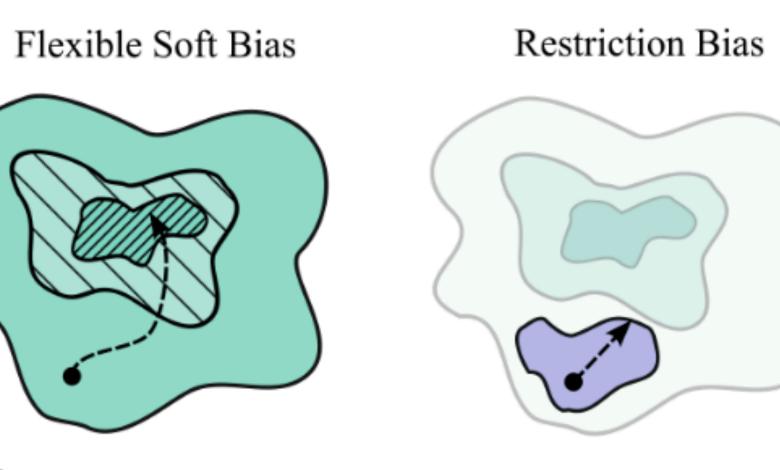
- What "can" be expressed
- What is "likely" to be expressed

Inductive Biases

Flexible Uniform Bias



* Deep Learning is Not So Mysterious or Different, Wilson (2025)



Overfitting

Inductive Biases

- "Simple" feature is less predictive of the label
- "Complex" feature is more predictive

- "Simple" feature is less predictive of the label
- "Complex" feature is more predictive

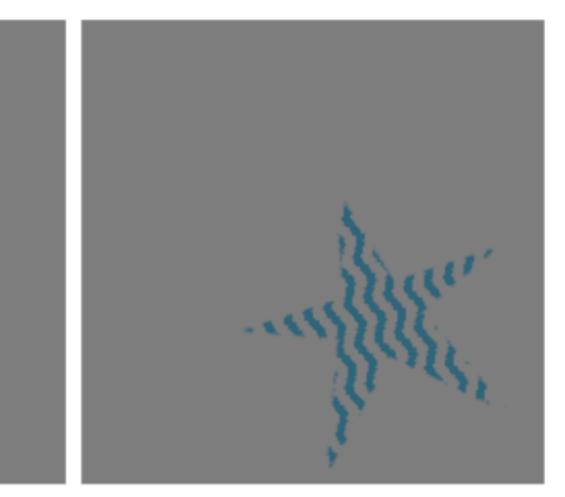
Models tend to sacrifice performance over solution complexity*

* What shapes feature representations? Exploring datasets, architectures, and training. Hermann et. al, (2020)

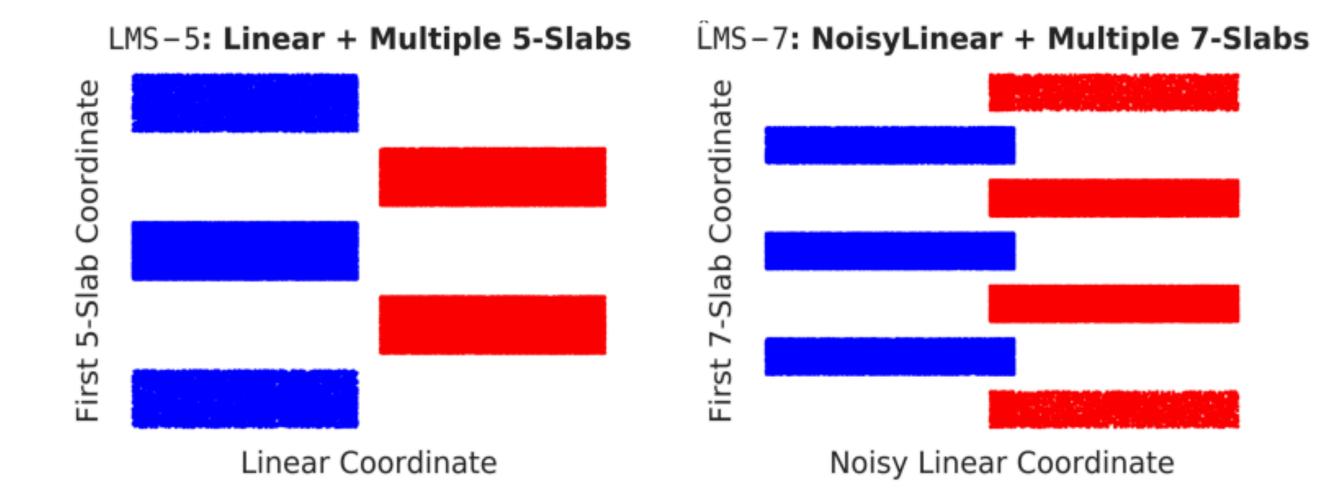
shape: trapezoid color: white texture: plus

* What shapes feature representations? Exploring datasets, architectures, and training. Hermann et. al, (2020)

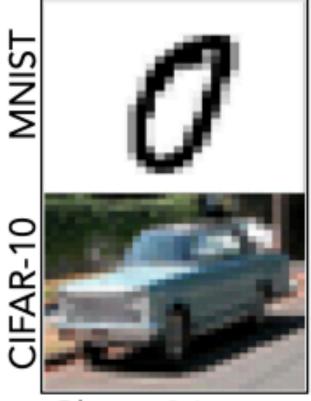
Trifeature



shape: star color: ocean texture: zigzag



MNIST-CIFAR



Class -1 Image

* The Pitfalls of Simplicity Bias in Neural Networks. Shah et. al, (2020)

- Some authors make optimiser-specific arguments
- There is no clear threshold after which the model switches to learning the more "complex" solutions
- Nor is it clear how complexity is defined sometimes

What can go wrong?

- In the literature you will find this phenomenon under names such as Simplicity Bias, Shortcut Learning, Gradient starvation.
- Typically seen as something undesirable because of the effect on OOD generalisation
- Although it is used to justify IID generalisation
- How to find the balance is still an open research question

Al Alignment

Al Alignment

Al Alignment

Shipwreck detection?

Back to Inductive Biases

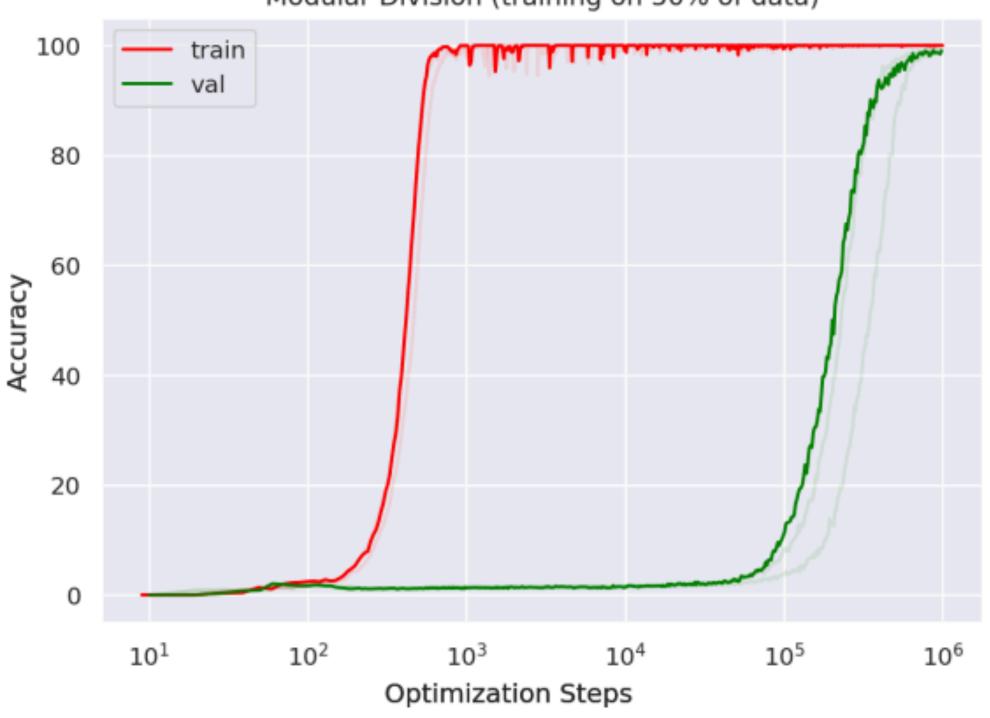
- "Simple" feature is less predictive of the label
- "Complex" feature is more predictive

Models tend to sacrifice performance over solution complexity*

* What shapes feature representations? Exploring datasets, architectures, and training. Hermann et. al, (2020)

What if we just didn't train long enough?

Task: division mod 97



* Grokking: Generalization beyond overfitting on small algorithmic datasets. Power et. al, (2022)

Modular Division (training on 50% of data)

What if we just didn't train long enough?

Still an open research question

• When trained on new things, model performance drops on the old things

- Sample level
- Class level
- Task level

When trained on new things, model performance drops on the old things

- Storing data might be expensive (or breaking privacy constraints)

• When trained on new things, model performance drops on the old things

- When trained on new things, model performance drops on the old things
- Storing data might be expensive (or breaking privacy constraints)
- Different settings considered in the literature

Catastrophic Forgetting

- When trained on new things, model performance drops on the old things
- Storing data might be expensive (or breaking privacy constraints)
- Different settings considered in the literature
- Continual Learning, Lifelong learning

Catastrophic Forgetting

- When trained on new things, model performance drops on the old things
- Storing data might be expensive (or breaking privacy constraints)
- Different settings considered in the literature
- Continual Learning, Lifelong learning
- Links to simplicity bias (learning dynamics and diversification)

Tunnel Effect - Context

(According to the paper)

*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

What is currently known about representations' dependence on layer depth?

Tunnel Effect - Context

(According to the paper)

What is currently known about representations' dependence on layer depth?

Layer level

"Networks learn to use layers in the hierarchy by extracting more complex features than the layers before"

*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

Network level

"network depth exponentially enhances capacity* (...) but overparameterized neural networks tend to simplify representations with increasing depth"

Tunnel Effect - Context

(According to the paper)

Layer level

"Networks learn to use layers in the hierarchy by extracting more complex features than the layers before"

*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

What is currently known about representations' dependence on layer depth?

- "So which one is it?"
- Network level (Starting point of the paper)

"network depth exponentially enhances capacity* (...) but overparameterized neural networks tend to simplify representations with increasing depth"

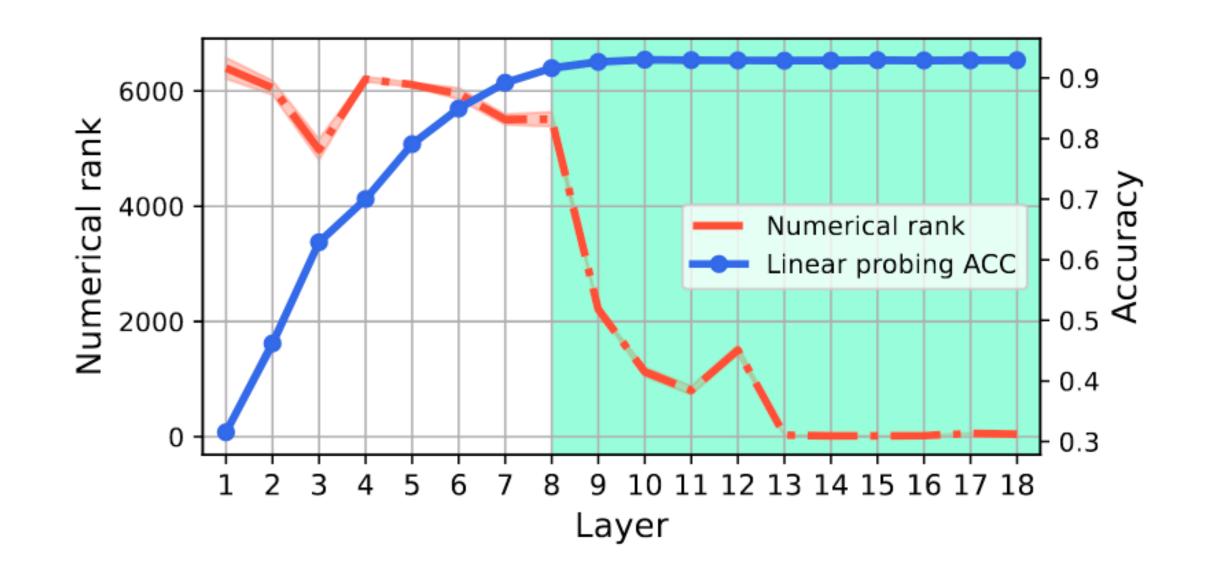


Figure 1: The tunnel effect for VGG19 trained on the CIFAR-10. In the tunnel (shaded area), the performance of linear probes attached to each layer saturates (blue line), and the representations rank is steeply reduced (red dashed line).

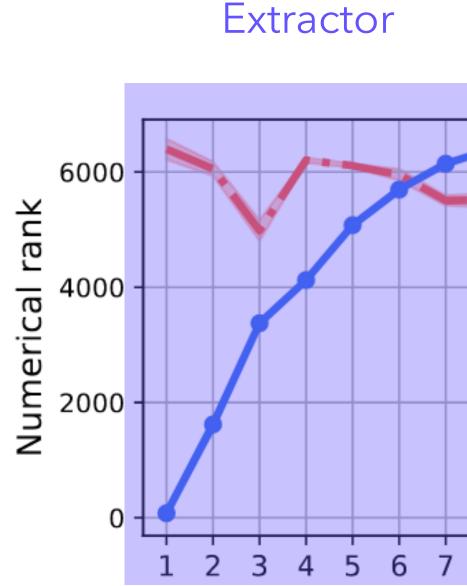
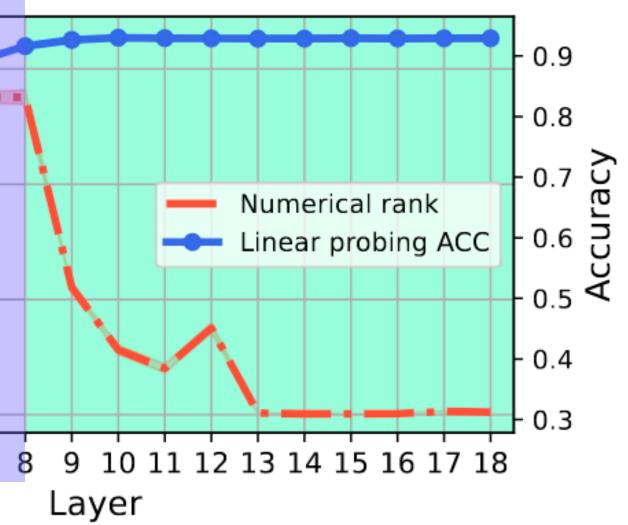


Figure 1: The tunnel effect for VGG19 trained on the CIFAR-10. In the tunnel (shaded area), the performance of linear probes attached to each layer saturates (blue line), and the representations rank is steeply reduced (red dashed line).



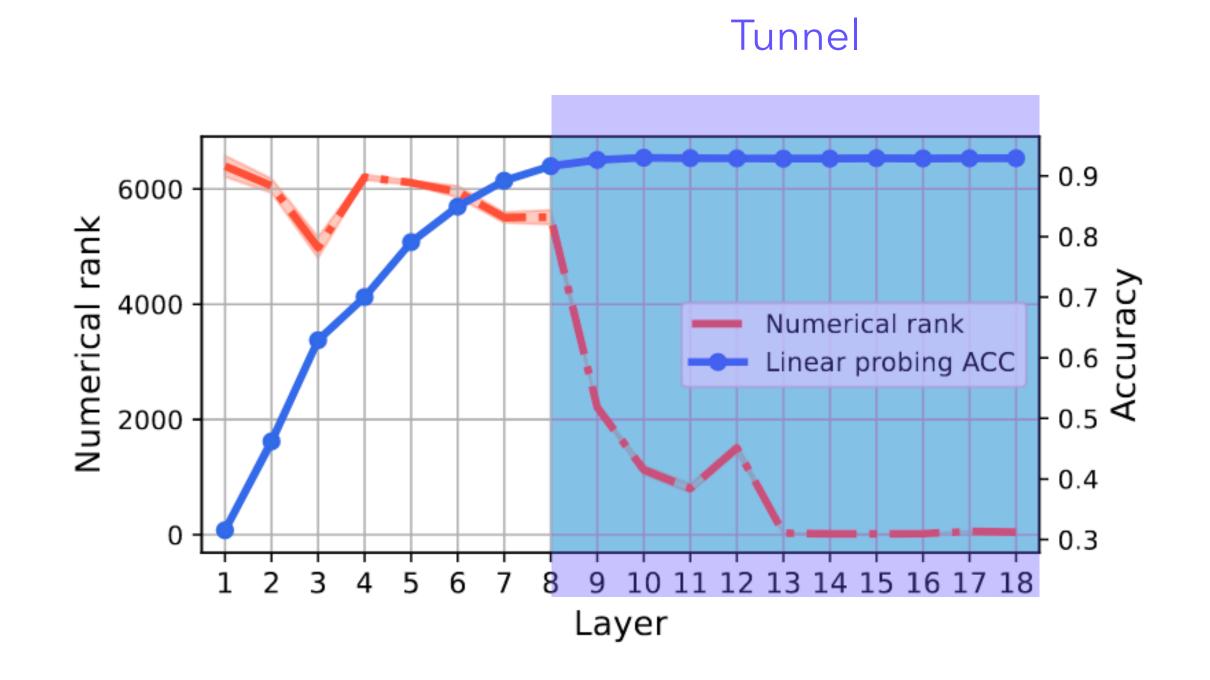


Figure 1: The tunnel effect for VGG19 trained on the CIFAR-10. In the tunnel (shaded area), the performance of linear probes attached to each layer saturates (blue line), and the representations rank is steeply reduced (red dashed line).

"95% (or 98%) of final accuracy"

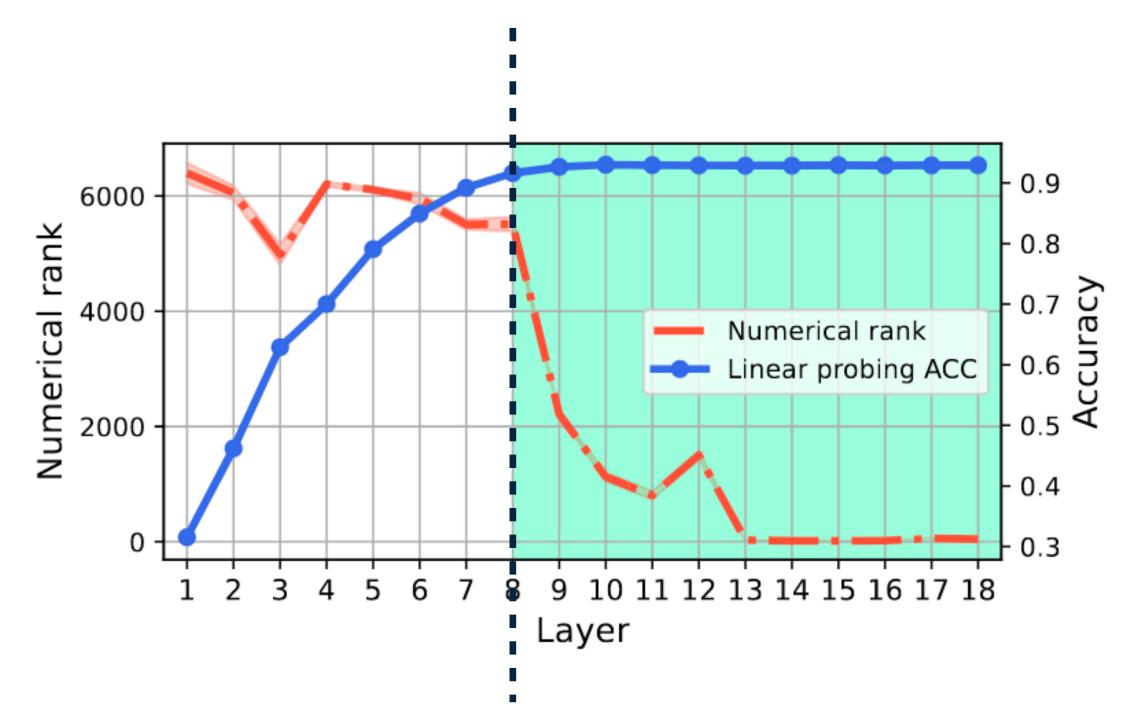


Figure 1: The tunnel effect for VGG19 trained on the CIFAR-10. In the tunnel (shaded area), the performance of linear probes attached to each layer saturates (blue line), and the representations rank is steeply reduced (red dashed line).

"95% (or 98%) of final accuracy"

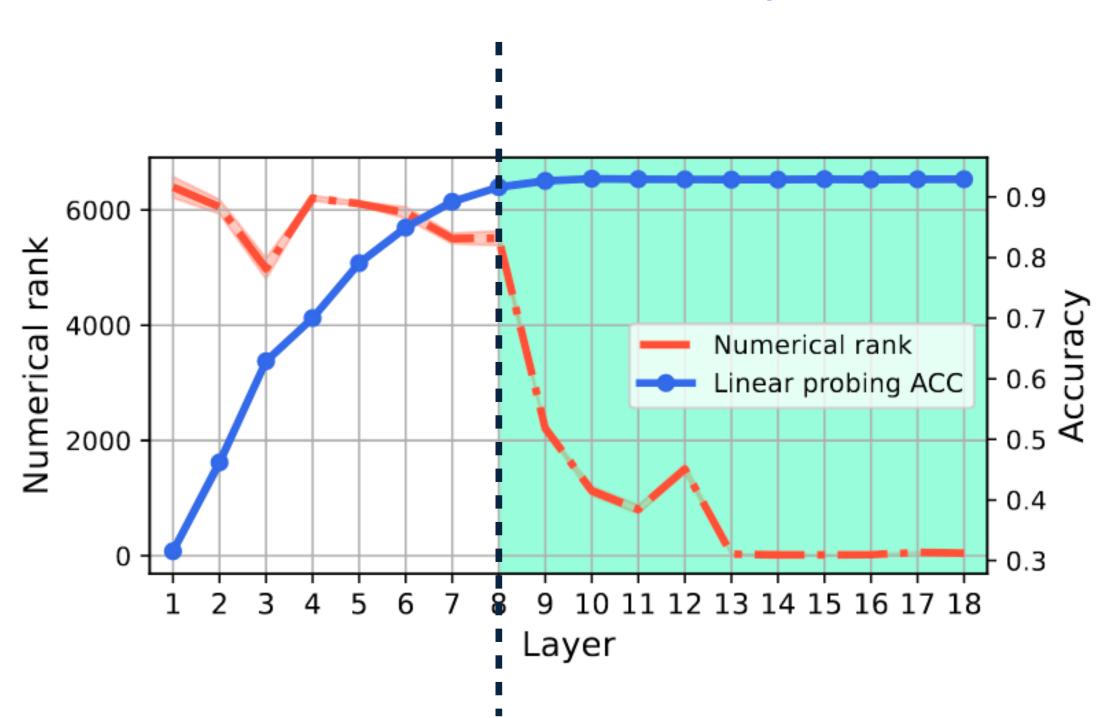


Figure 1: The tunnel effect for VGG19 trained on the CIFAR-10. In the tunnel (shaded area), the performance of linear probes attached to each layer saturates (blue line), and the representations rank is steeply reduced (red dashed line).

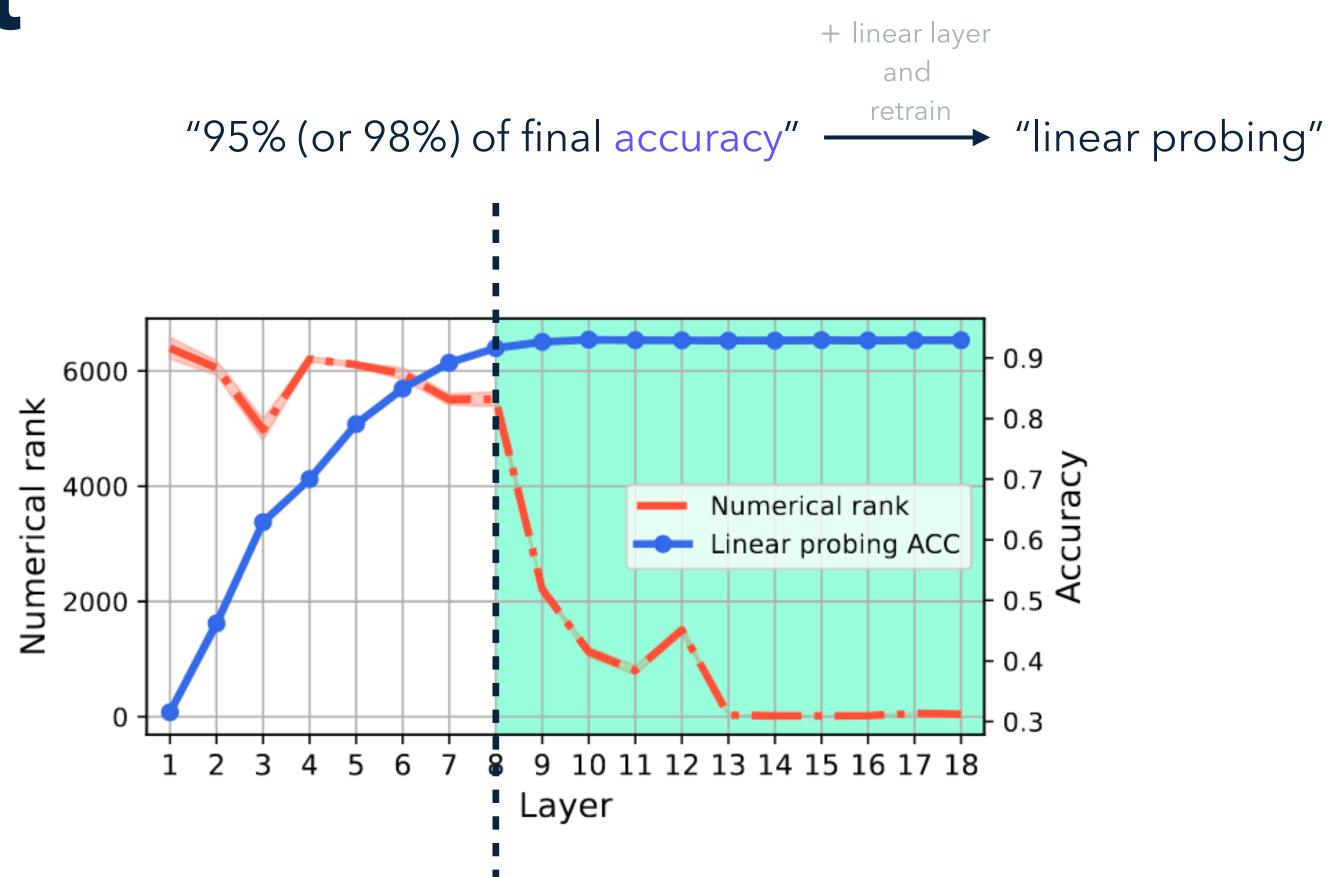


Figure 1: The tunnel effect for VGG19 trained on the CIFAR-10. In the tunnel (shaded area), the performance of linear probes attached to each layer saturates (blue line), and the representations rank is steeply reduced (red dashed line).

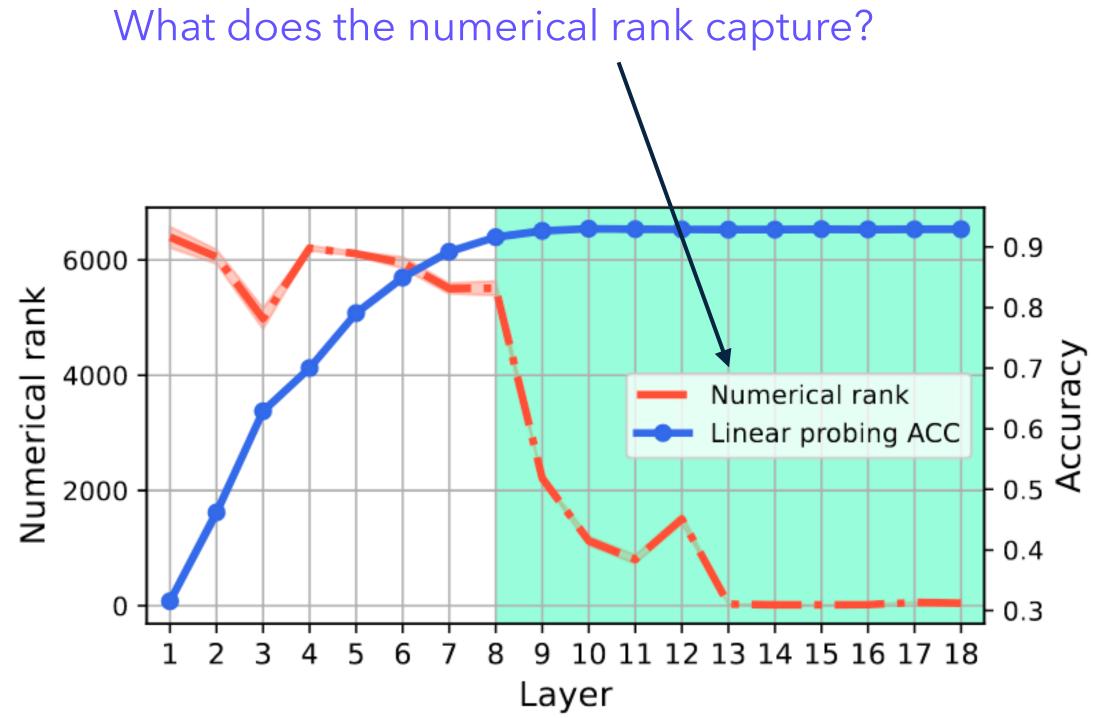


Figure 1: The tunnel effect for VGG19 trained on the CIFAR-10. In the tunnel (shaded area), the performance of linear probes attached to each layer saturates (blue line), and the representations rank is steeply reduced (red dashed line).

Tunnel Effect - Claims

- "the tunnel develops early during training time"
- "compresses the representations and hinders OOD generalization"
- "its size is correlated with network capacity and dataset complexity"

Compression and OOD

transfer learning"

Motivation: "intermediate layers perform better than the penultimate ones for

Compression and OOD

transfer learning"

CIFAR-10

OOD:

linear

probing

*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

Motivation: "intermediate layers perform better than the penultimate ones for

10-class CIFAR-100 subset

Compression and Transfer

transfer learning"

CIFAR-10

OOD:

linear

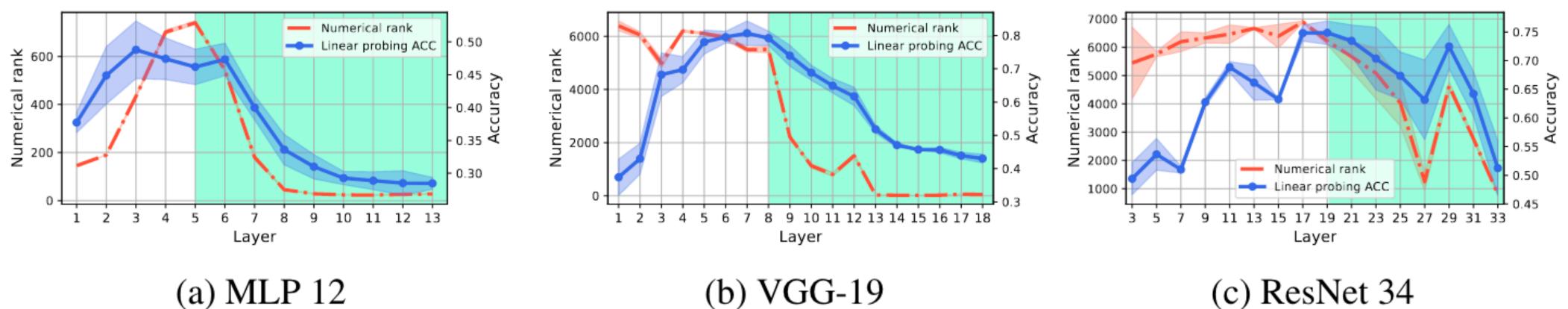
probing

*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

Motivation: "intermediate layers perform better than the penultimate ones for

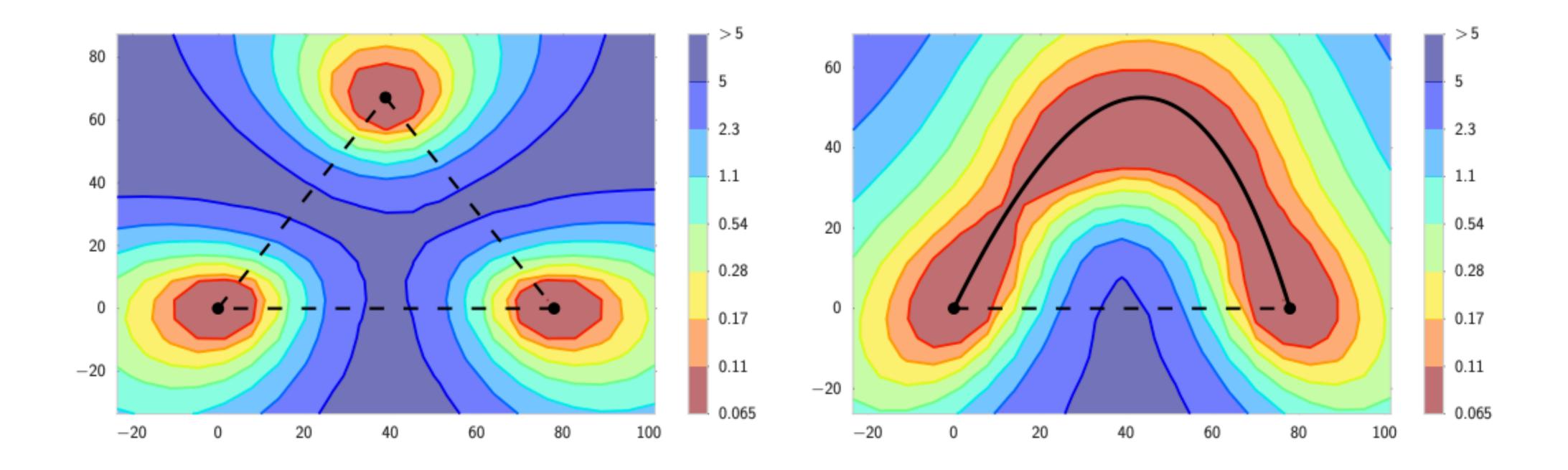
10-class CIFAR-100 subset

Compression and Transfer

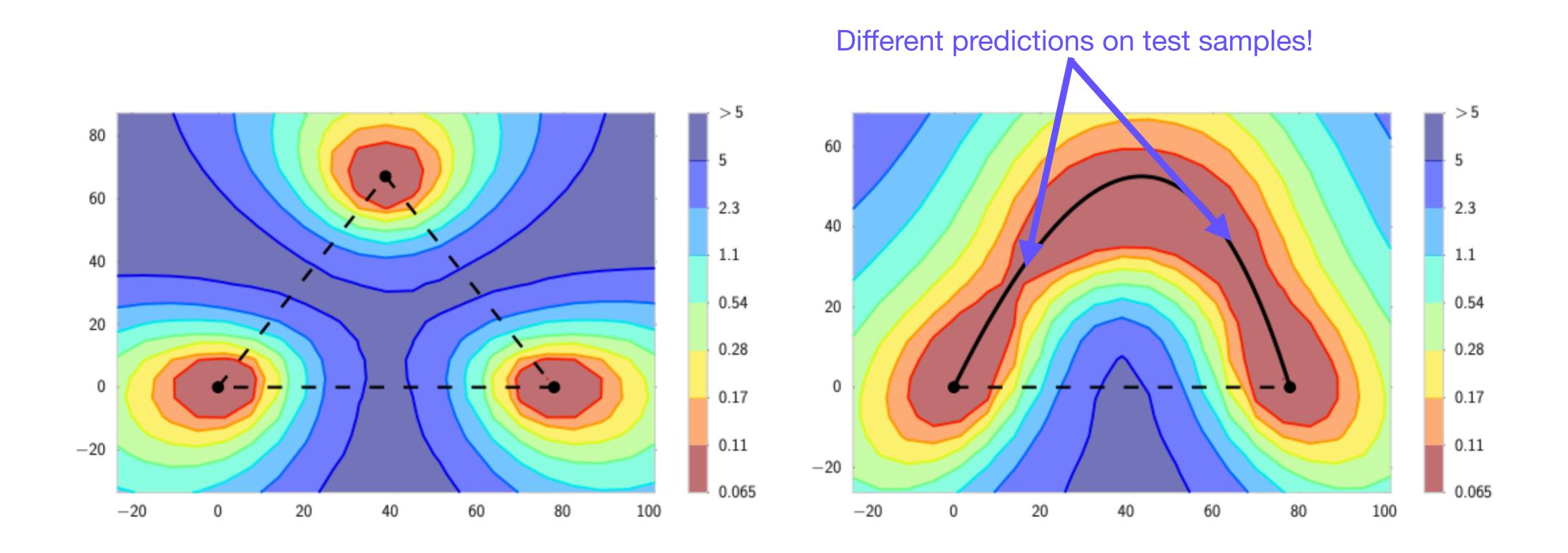


*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

"The tunnel degrades the out-of-distribution performance correlated with the representations' numerical rank"



* Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. Garipov et. al, (2018)



* Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. Garipov et. al, (2018)

"It is a misnomer to even refer to the converged solutions as local optima!"

* Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. Garipov et. al, (2018)

• There are many things we still don't understand about DNNs

- There are many things we still don't understand about DNNs
- but we are slowly starting to gain some intuitions and understanding.

Take-aways

- There are many things we still don't understand about DNNs
- but we are slowly starting to gain some intuitions and understanding.
- While doing so, we also infer practical implications. What examples can you think of/remember from today's lecture?

Take-aways

- There are many things we still don't understand about DNNs
- but we are slowly starting to gain some intuitions and understanding.
- While doing so, we also infer practical implications. What examples can you think of/remember from today's lecture?
- Many interesting phenomena are tightly linked to properties of learned representations and training dynamics

Take-aways

- There are many things we still don't understand about DNNs
- but we are slowly starting to gain some intuitions and understanding.
- While doing so, we also infer practical implications. What examples can you think of/remember from today's lecture?
- Many interesting phenomena are tightly linked to properties of learned representations and training dynamics and after finishing this module you should know the basics required to join the conversation!