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DNNs and Overparametrisation

Is overparametrisation good or 
bad? Why?
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receives one of the 1000 labels at random) 

• What training accuracy do you expect a model like AlexNet to be able to 
achieve if left to train to convergence? What about a ResNet-18? 

• Why?

* UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION, Zhang et. al (2016)
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DNNs have the capacity to massively overfit 
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Why don’t they?



More “Good” Solutions Exist

* Deep Learning is Not So Mysterious or Different, Wilson (2025)



Inductive Biases

• Informally: 

• What “can” be expressed 

• What is “likely” to be expressed
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Bias towards Low-complexity Solutions

* The Pitfalls of Simplicity Bias in Neural Networks. Shah et. al, (2020)



• Some authors make optimiser-specific arguments 

• There is no clear threshold after which the model switches to learning the 
more “complex” solutions 

• Nor is it clear how complexity is defined sometimes

Bias towards Low-complexity Solutions



Bias towards Low-complexity Solutions

What can go wrong?



• In the literature you will find this phenomenon under names such as 
Simplicity Bias, Shortcut Learning, Gradient starvation. 

• Typically seen as something undesirable because of the effect on OOD 
generalisation 

• Although it is used to justify IID generalisation 

• How to find the balance is still an open research question

Bias towards Low-complexity Solutions



AI Alignment



AI Alignment



AI Alignment

Shipwreck detection?



Back to Inductive Biases



• “Simple” feature is less predictive of the label 

• “Complex” feature is more predictive 

• Models tend to sacrifice performance over solution complexity*

Bias towards Low-complexity Solutions

* What shapes feature representations? Exploring datasets, architectures, and training. Hermann et. al, (2020)



What if we just didn’t train long 
enough?



Grokking
Task: division mod 97

* Grokking: Generalization beyond overfitting on small algorithmic datasets. Power et. al, (2022)



What if we just didn’t train long 
enough?

Still an open research question
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Catastrophic Forgetting

• When trained on new things, model performance drops on the old things 

• Storing data might be expensive (or breaking privacy constraints) 

• Different settings considered in the literature 

• Continual Learning, Lifelong learning 

• Links to simplicity bias (learning dynamics and diversification)



Tunnel Effect

*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

https://arxiv.org/search/cs?searchtype=author&query=Masarczyk,+W
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Tunnel Effect

Extractor
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Tunnel Effect
“95% (or 98%) of final accuracy”

+ linear layer  
and 

 retrain
“linear probing”

*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

https://arxiv.org/search/cs?searchtype=author&query=Masarczyk,+W


Tunnel Effect
What does the numerical rank capture?

*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

https://arxiv.org/search/cs?searchtype=author&query=Masarczyk,+W


Tunnel Effect - Claims

• “the tunnel develops early during training time”


• “compresses the representations and hinders OOD generalization”


• “its size is correlated with network capacity and dataset complexity”

*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

https://arxiv.org/search/cs?searchtype=author&query=Masarczyk,+W
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Compression and Transfer

“The tunnel degrades the out-of-distribution performance  
correlated with the representations’ numerical rank”

*The Tunnel Effect: Building Data Representations in Deep Neural Networks. Masarczyk et. al, (2023)

https://arxiv.org/search/cs?searchtype=author&query=Masarczyk,+W
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Different predictions on test samples!



Mode Connectivity

* Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. Garipov et. al, (2018)

“It is a misnomer to even refer to the converged solutions as local optima!”
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Take-aways

• There are many things we still don’t understand about DNNs 

• but we are slowly starting to gain some intuitions and understanding. 

• While doing so, we also infer practical implications. What examples can you 
think of/remember from today’s lecture? 

• Many interesting phenomena are tightly linked to properties of learned 
representations and training dynamics and after finishing this module you 
should know the basics required to join the conversation!


