Learning Perspectives:
From Discriminative to Generative



| et’s start with from a discriminative
perspective
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Task: given a classification problem, train a good model

® You can now reason about choosing:
® An architecture,
® A loss function,
® Some regularisers,
® Data augmentation, etc.

® How can you tell it the model you decide to use it's good enough?



Test Accuracy Is Not Everything
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Context

® You are building a fraud detection model for a financial institution

® You are building a model for new medical discovery



Context

® You are building a fraud detection model for a financial institution

® You are building a model for new medical discovery

Additional data might be expensive to acquire or even inexistent
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Assume: no additional data

® Reminder: How can you tell it the model you decide to use it's good
enough?

® \We don't have a way of knowing but we can use different perspectives on
learning to analyse models and understand what they are doing

® | et's first reason about what happens:
® while training ana

® throughout the model
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How can we achieve good separability?






What is the underlying assumption?



What can go wrong?



¢
L
2
1 £
<
e
U
=
=
L
o0




Are these anecdotes becoming DL myths?
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With this in minq, let’s talk about learning
representations



The Hypothesis Space View

Hypothesis space
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The Hypothesis Space View

One hypothesis Deep Learning “equivalent”
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What happens during learning?



The Hypothesis Space View

Hypothesis Space
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The Hypothesis Space View

Hypothesis Space

Training sample 3




The Hypothesis Space View

Hypothesis Space



The Hypothesis Space View

Are we uniformly sampling from this space?



The Hypothesis Space View

Are we uniformly sampling from this space?
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The Hypothesis Space View

® Captures only what happens throughout learning, not throughout network
as well



The Hypothesis Space View

® Captures only what happens throughout learning, not throughout network
as well

® Particularly useful for Bayesian Deep Nets
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The Manifold View

® Assumption: “Data lies on a low-dimensional manifold”

Close in space but far away on the manifold

Stolen from Wikipedia



The Manifold View

In Deep Learning we don't actually work with the mathematical object

N

® Assumption: “Data lies on a low-dimensional manitold”



The Manifold View

® Assumption: “Data lies on a low-dimensional manitold”

Let's massively simplify things



The Manifold View

® Assumption: “Data lies on a low-dimensional manitold”
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The Manifold View

® Assumption: “Data lies on a low-dimensional manitold”
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What's the biggest challenge?



The Manifold View
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The Manifold View




What are classical augmentations
trying to do?



The Manifold View




What about augmentations like Mixup?



What about augmentations like Mixup?



The Information View



The Information Bottleneck Theory

“Opening the black box of Deep Neural Networks via Information”



The Information Bottleneck View

o | (X,Y)=H(X)-H(X]Y)
® “Minimal sufficient statistics” perspective

® \What's the assumption and what can go wrong?
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Back to Barlow Twins
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Remember this?



The Distribution Modelling View
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The Distribution Modelling View
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The Distribution Modelling View



Take-aways

® To better analyse and evaluate models we first need to reflect on what
happens throughout the model and during learning

® A number of different (sometimes complementary) perspectives exist



Take-aways

® To better analyse and evaluate models we first need to reflect on what
happens throughout the model and during learning

® A number of different (sometimes complementary) perspectives exist each
with its own strengths



