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Quick Recap

What are “learned representations”?



• Informal: How the model encodes the input 

• At a particular point in the network: collection of outputs for all possible 
inputs (often implied: belonging to your data distribution) 

• In papers often people refer to feature maps of input images as the “learned 
representations”

Learned Representations



Quick Recap

Why should we care about them?



Test Accuracy Is Not Everything 
(Reminder)
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Quick Recap

e.g. Use distance in representational space to gauge performance on unseen samples?
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Quick Recap: FID

We need to understand the representational spaces
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Let’s look at some feature maps 

(First feature map for a few different samples)



ResNet-18 trained on ImageNet 

Feature maps after the first convolutional layer



Reference 

feature map

A B C D



Let’s look at some feature maps 

(Second feature map for a few different samples)



Reference 

feature map
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Now let’s look at a later point in the network



Reference 
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Reference 

feature map

A B C D



Why is it hard to identify similarity? 

(MANY reasons, but let’s give some examples)



How can we find out if similar input patterns are 
encoded by a collection of feature maps?
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How can we find out if similar input patterns are 
encoded by a collection of feature maps?

functional structural



Model Stitching



Model Stitching

• Intuition: Using certain feature maps, how well can a model perform?
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Model Stitching



Model Stitching

Can this model perform well? 
If yes, representations A and B are “compatible”



Reminder: How can we find out if similar input 
patterns are encoded by a collection of feature maps? 



Reminder: How can we find out if similar input 
patterns are encoded by a collection of feature maps? 

What does compatibility of embeddings tell us about 
input patterns represented?



class A

class B

class C

Reminder
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Model Stitching
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Model Stitching
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Model Stitching
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Platonic Representations?



How can we find out if similar input patterns are 
encoded by a collection of feature maps?

functional structural



• Most common method
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• Statistical perspective 
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• A and B are mapped to the X and Y space
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Centered Kernel Alignment (CKA)

X = AAT Y = BBT

M x M tensors 

M - number of samples

• A and B are mapped to the X and Y space



Centered Kernel Alignment (CKA)

X = AAT Y = BBT

M x M tensors 

M - number of samples 

Similarity between each pair of samples according to all the feature maps

• A and B are mapped to the X and Y space



• A and B are mapped to the X and Y space 

• Hilbert-Schmidt Independence Criterion (HSIC):

HSIC(X,Y ) = 1
(M−1)2 tr(X
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Centered Kernel Alignment (CKA)

CKA(X,Y ) = HSIC(X,Y )√
HSIC(X,X)HSIC(Y ,Y )

X = AAT Y = BBT

HSIC(X,Y ) = 1
(M−1)2 tr(X

∗, Y ∗)

• A and B are mapped to the X and Y space 

• Hilbert-Schmidt Independence Criterion (HSIC): 

• Centered Kernel Alignement (CKA):



What did the functional perspective (try to) capture 
that CKA doesn’t?



CKA take-away

• Structural similarity is more nuanced and useful than functional similarity 

• But not accounting for the functional use of the feature maps is a major 
drawback of structural similarity 

• Compression is problematic for both perspectives



Do these feature maps capture the same patterns in 
the input?
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How can we find out what input patterns a feature 
map encodes?



Saliency Map Comparison
GradCAM

• Intent: What input regions are “important” when making a prediction?



Saliency Map Comparison
GradCAM

• Intent: What input regions are “important” when making a prediction? 

• If I make a small change to the input, how much does it affect the prediction?



Saliency Map - CIFAR10 Example
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Saliency Map Comparison

Yun et al. (2019). CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
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Yun et al. (2019). CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
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Back to Basics: Derivative

• How much the output changes when I make an infinitesimally small change 
to the input 

• Robust feature - prediction doesn’t change when I make a perturbation 

• Non-robust feature - prediction is sensitive to perturbations 
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h



limh→0
f(x)−f(x+h)

h

Back to Basics: Derivative

• How much the output changes when I make an infinitesimally small change 
to the input 

• Importance or sensitivity?

limh→0
f(x)−f(x+h)

h
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Saliency Map Comparison

• Looking at sensitivity could be insightful 

• But is it only capturing a small part of what a model learns 

• Sensitive features can be important, but not all important features are 
sensitive
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Take-aways

• We don’t have good ways of interpreting what is going on inside DNNs 

• But we can use basic DL concepts to construct correct interpretations of 
existing techniques 

• And hopefully build better ones 

• Understanding representations is very much work in progress


