
Jay Bear and Jonathon Hare

Implicit Models
and Test-Time Compute



How deep should a network be?



Hi, I'm Jay!

I'm a PhD student in Vision, 
Learning, and Control. 

I research recurrent and implicit 
models in deep learning. 

My supervisors are Adam Prügel-
Bennett and Jonathon Hare. 

I love math and enjoy 
programming in Haskell.

About Me



Explicit vs Implicit



Basically all models.

Models are often made up of 
layers or blocks. 

These components can be defined 
as explicit functions: 

• Generally   , where
. 

• Linear, convolution, multi-
headed attention, residual, 
recurrent, etc.

y = fθ (x)
fθ : ℝn → ℝm

Explicit Models



Why anything else?

Surely deep learning is just composing explicit functions? 

Clearly explicit models do well: 

- ResNets and vision transformers achieve human-level image recognition. 

- LLMs produce human-like natural language. 

- Cancer detection and radiology diagnostics made easier. 

- Deep reinforcement learning can beat professionals in games. 

- Near-human transcription accuracy with transformers.

Explicit Models



Why anything else?

There's still problems. They... 

...require massive amounts of data, compute, and energy. 

...struggle with out-of-distribution generalization. 

...often lack robustness and interpretability. 

...are vulnerable to adversarial attacks and subtle errors. 

To move forward, we must not only refine the tools we know, but also seek 
out the tools we don't yet understand.

Explicit Models



All models... Plus more.

Instead, define components as 
solving implicit functions: 

 

   is often a 'regular' architecture. 

An iterative algorithm (a solver) is 
used to obtain    by finding zeros. 

Can be stacked or used with other 
components.

Fθ (x) = y where fθ (x, y) = 0

fθ

y

Implicit Models



What can they do that explicit models can't?

Any explicit function  can be written implicitly: 

 

Not every implicit function can be written explicitly: 

, the unit circle, cannot be globally explicit.

y = f (x)

F(x, y) = y − f (x) = 0

F(x, y) = x2 + y2 − 1 = 0

Implicit Models



Differentiating Implicit Models



Don't do it all the way.

Can't we just backpropagate 
through  ? 

We can... 

...but calculating  varies in 
uncontrollable complexity... 

...and the solver often requires 
too many iterations. 

The solution is the implicit 
function theorem.

Fθ

Fθ (x)

Backpropagation?



Implicit zeros are locally explicit function graphs.

Let   be a continuously differentiable function and let
 such that . 

If Jacobian matrix  is invertible, then there exists an open set , 
with , such that there exists a unique function , where  
and . 

 is then continuously differentiable with Jacobian 

f : ℝn × ℝm → ℝm

a ∈ ℝn, b ∈ ℝm f(a, b) = 0

Jf, y (a, b) U ⊂ ℝn

a ∈ U g : U → ℝm g(a) = b
∀x ∈ ℝn : f(x, g(x)) = 0

g

Jg (x) = −[Jf, y (x, g(x))]
−1

Jf, x (x, g(x))

Implicit Function Theorem



A unit circle example.

Let   be a 
continuously differentiable function 
and let  such that 

. 

Unit circle   with 
point  on its graph.

f : ℝn × ℝm → ℝm

a ∈ ℝn, b ∈ ℝm

f(a, b) = 0

f(x, y) = x2 + y2 − 1
(a, b)

Implicit Function Theorem



A unit circle example.

If Jacobian matrix  is 
invertible, then there exists an open 
set , with , such that there 
exists a unique function , 
where  and 

. 

Partial derivative  is 
invertible when . 
 approximately represented in blue.

Jf, y (a, b)
U ⊂ ℝn a ∈ U

g : U → ℝm

g(a) = b
∀x ∈ ℝn : f(x, g(x)) = 0

Jf, y (a, b) = 2b
b ≠ 0

g

Implicit Function Theorem



A unit circle example.

 is then continuously differentiable 
with Jacobian 

 

Partial derivative . 
Since ; 

g

Jg (x) = −[Jf, y (x, g(x))]
−1

Jf, x (x, g(x))

Jf, x (a, b) = 2a
y = g(x)

Jg (x) = −
2x

2g(x)
= −

x
y

=
dy
dx

Implicit Function Theorem



Backpropagating with the implicit function theorem.

With  viewed as a function on input  and parameters :F x θ

Autograd with Implicit Functions



Backpropagating with the implicit function theorem.

 and  can be viewed equivalently as  due to the implicit function theorem;x θ (⋅)

Autograd with Implicit Functions

 

but with    such that   ; 

(̄⋅) = [−( ∂f
∂y )

−1

( ∂f
∂(⋅) )]

⊤

ȳ = −( ∂f
∂(⋅) )

⊤

( ∂f
∂y )

−⊤

ȳ

v̄ = −( ∂f
∂y )

−⊤

ȳ (̄⋅) = ( ∂f
∂(⋅) )

⊤

v̄

( ∂f
∂y )

⊤

v̄ + ȳ = 0



Backpropagating with the implicit function theorem.
Autograd with Implicit Functions

Calculating    now just requires solving 

 

which is an implicit function!

v̄

( ∂f
∂y )

⊤

v̄ + ȳ = 0

The same solver we use for finding    in   can also be used to find    in y f(x, y) = 0 v̄

∇ ̂f (ȳ, v̄) = ( ∂f
∂y )

⊤

v̄ + ȳ = 0



Backpropagating with the implicit function theorem.

In PyTorch, this is relatively 
simple. 

Use the solver to calculate . 

Clone, detach, and re-engage 
gradients with function call. 

Use the solver on PyTorch's 
autograd.grad function to 
find .

y

v̄

Autograd with Implicit Functions

# Forward: 
y = solver(f, x) 
# Backward: 
y_in   = y.clone().detach().requires_grad_() 
z_out  = f(x, y_in) 
v_grad = solver( 
  lambda g: torch.autograd.grad( 
    outputs      = z_out, 
    inputs       = y_in, 
    grad_outputs = g, 
    retain_graph = True 
  )[0] + y_grad, 
  y_grad 
)



Types of Implicit Model



They're all basically the same.

• Root-finding implicit models: 
- Locate zeros. 

• Neural ODEs: 
- Solve differential equations. 

• Optimization networks: 
- Solve optimization problems. 

• Deep equilibrium networks 
(DEQs): 
- Find fixed-points.

Common Types



They're all basically the same.

• Root-finding implicit models: 
- Locate zeros. 

• Neural ODEs: 
- Solve differential equations. 

• Optimization networks: 
- Solve optimization problems. 

• Deep equilibrium networks 
(DEQs): 
- Find fixed-points.

Common Types



Locate zeros.

• Define some layer/block   with parameters , then 

 
 is some  where  

• Certain constraints and designs learn different processes: 

•  is doing optimization. (optimization layer) 

•    is locating fixed-points of  . (DEQ layer) 

•  locates boundaries. (mostly)

fθ : ℝn × ℝm → ℝm θ

Fθ (x) = sel {y ∈ ℝm fθ (x, y) = 0}
Fθ (x) y fθ (x, y) = 0

fθ = ∇gθ ⟹ Fθ

fθ (x, y) = y − hθ (x, y) ⟹ Fθ hθ

fθ (x, y) < 0 ⇔ y ∈ Ω ⟹ Fθ

Root-Finding Implicit Models



Solve differential equations.

Neural networks can be used to 
specify ODEs; 

 

These can be solved – using 
integration – to find  at some 
time . 

Its gradient can be computed by 
integration too.

dh(t)
dt

= f(h(t), t, θ)

h(T)
T

Neural ODEs

https://arxiv.org/pdf/1806.07366



Solve optimization problems.

  has zeros at critical points 
of . 

If  is strictly convex – either by 
constraint or design – then  
has a unique solution. 

Or ensure the Karush-Kuhn-Tucker 
conditions are met for uniqueness. 

Often a positive-definite quadratic 
form with linear constraints.

fθ = ∇gθ
gθ

gθ
Fθ (x)

Opt. Networks

Mosek ApS



Find fixed-points.

Instead of finding zeros, find fixed-points where the 
function doesn't change: 

 

In many cases,  can be found through recurrence: 

 

This can be accelerated under certain constraints, such as 
   being contractive. 

The gradient also involves finding a fixed-point.

y* = fθ (x, y*)
y*

y* = lim
m→∞

y(m) where y(n+1) = fθ (x, y(n))

fθ

Deep Equilibrium Networks



Varying sizes and complexity.

What if we wanted to learn to 
solve mazes by drawing a path? 

Such a model needs to handle 
mazes of different sizes and 
complexities. 

Ideally exact solutions – no 
approximations. 

How deep should a network be?

Problem Solving



Converging to a solution.

A deep equilibrium network can be considered to have arbitrary depth with 
weight-tied components when thought of as recurrence. 

This is analogous to iteration in algorithms. 

Deep equilibrium networks can learn to solve mazes through only examples! 

Learning Iterative Algorithms



Converging to a solution.

A deep equilibrium network can be considered to have arbitrary depth with 
weight-tied components when thought of as recurrence. 

This is analogous to iteration in algorithms. 

Deep equilibrium networks can learn to solve mazes through only examples... 

Learning Iterative Algorithms

...sometimes! 
(we're still not sure of the sufficient conditions)



How deep should a network be?


