
Guest Lecture
COMP6258

Diffusion Models & Flow
Matching

Introduction

Diffusion

Diffusion Overview
Diffusion models learn map from a Gaussian distribution to a distribution
approximated with a dataset.

Multiple steps are used to execute this mapping.

ImageNet images generated using the EDM 2 diffusion model (FID = 1.91)

https://github.com/NVlabs/edm2

Forward Process
The forward process gradually adds noise to our starting image x0:

where t ∈ [0,T] is the timestep.

x0 x1 xT-1 xT

We then use a network f to predict x0, with parameters θ, to reverse this process:

where σ controls the amount of noise at each step.

Reverse Process

xT xT-1 x1 x0

This indirectly maximizes the the log-likelihood of the training data w.r.t. the
network parameters:

In practice, we typically learn the reverse process using a neural network D which
predicts noise instead of x0:

Training

* See Chapter 18 of "Understanding Deep Learning" by Simon Prince for full loss derivation

Inference
To step through from xT to x0 we repeatedly apply the following equation:

where σ = 0 leads to deterministic diffusion and σ > 0 results in stochastic
diffusion.

2D Toy Example
To train our model, we give a network a
linear combination of xT to x0 and train it
to predict xT.

At inference time, we sample xT, then
repeated apply our network to step
towards x0.

* https://github.com/harveymannering/boilerplate_code/blob/main/diffusion_toy_example.ipynb

https://github.com/harveymannering/boilerplate_code/blob/main/diffusion_toy_example.ipynb

2D Toy Example
Deterministic Sampling (σ = 0) Stochastic Sampling (σ > 0)

* https://github.com/harveymannering/boilerplate_code/blob/main/diffusion_toy_example.ipynb

https://github.com/harveymannering/boilerplate_code/blob/main/diffusion_toy_example.ipynb

Algorithms

A summary of both training and inference can be seen below.

Practical Considerations

● The architecture must have the same input/output dimensions (e.g. U-Net).
We must condition the network on the timestep t.

● Both training and inference can be very slow. Latent Diffusion significantly
speeds up both by doing diffusion/flow matching in the latent space of a VAE,
effectively reducing the image dimensions.

E
ncoder D

ec
od

er

Original Image
(512×512)

Reconstructed Image
(512×512)

Latent
Image

(64×64)

Flow Matching

Flow Matching
The problem we are trying to solve:

Given samples two distributions, q0 and
q1, can we find a mapping that transforms
q0 in to q1?

For this mapping, we can use a vector field
ut(x) where t is between 0 and 1, and x is
sample from the probability path p, that runs
between q0 and q1.

Flow Matching
Think of ut(x) as an Ordinary Differential
Equation (ODE).

Flow matching tries to learning the ut(x) with a
neural network vθ

Unfortunately, calculating ut(x) in not tractable.

Conditional Flow Matching
However, ut(x|z) is tractable to calculate, giving the
loss function

where z is a conditioning variable.

Furthermore, both loss function have the same
gradients, meaning optimizing the latter, also
optimizes the former.

Once we have learnt our network vθ, we can use an
ODE solver to map from q0 and q1.

We can scale this up to higher dimensional distributions, such as image distributions.

If q0 is a Gaussian and q1 is an image distribution, we now have a generative model.

x0~q0 x1~q1x

Conditional Flow Matching

Basic Form a CFM
So how to we calculate x and ut?

Basic Form a CFM
So how to we calculate x and ut?

Firstly, we draw samples from x0~q0 and x1~q1
at random.

Basic Form a CFM
So how to we calculate x and ut?

Firstly, we draw samples from x0~q0 and x1~q1
at random.

Basic Form a CFM
So how to we calculate x and ut?

Firstly, we draw samples from x0~q0 and x1~q1
at random.

where σ is a small amount of noise (≈0.01).

Basic Form a CFM

* https://github.com/harveymannering/boilerplate_code/blob/main/flow_matching_toy_example.ipynb

https://github.com/harveymannering/boilerplate_code/blob/main/flow_matching_toy_example.ipynb

CFM
If we train a model like this, then
use an ODE solver to map from
we get something like this.

However, flow paths are curved,
meaning we need more steps in
for our ODE solver to accurately
map between q0 and q1.

* https://github.com/harveymannering/boilerplate_code/blob/main/flow_matching_toy_example.ipynb

https://github.com/harveymannering/boilerplate_code/blob/main/flow_matching_toy_example.ipynb

Connection to Rectified Flows
● CFM is equivalent to rectified flows,

the only difference being that σ=0.
● State of the art text-to-image models

currently use Rectified Flows (e.g.
Stable Diffusion 3, FLUX.1,
InstaFlow)

Image generated using FLUX.1
model

https://www.runcomfy.com/comfyui-workflows/comfyui-flux-realismlora-workflow-photorealistic-ai-images
https://www.runcomfy.com/comfyui-workflows/comfyui-flux-realismlora-workflow-photorealistic-ai-images

Optimal Transport

Optimal Transport
How can map one distribution to another in such a way that minimises some
displacement cost?

2-Wasserstein distance is used to measure the transport cost between
distributions. This distance can be expressed using our vector field ut.

Optimal Transport
The coupling π, describes for every
combination of point between two
distributions, the optimal amount of mass to
move between the two distributions.

π is sometimes called as a transport plan.

Sinkhorn algorithm can be used to fine π.

Peyré and Marco. "Computational optimal transport". 2019

https://arxiv.org/pdf/1803.00567

Optimal Transport
The coupling π, describes for every
combination of point between two
distributions, the optimal amount of mass to
move between the two distributions.

π is sometimes called as a transport plan.

Sinkhorn algorithm can be used to fine π.

Peyré and Marco. "Computational optimal transport". 2019

https://arxiv.org/pdf/1803.00567

OT-CFM
CFM randomly couples samples from x0~q0
and x1~q1.

OT-CFM
CFM randomly couples samples from x0~q0
and x1~q1.

Optimal Transport CFM (OT-CFM) uses the
Sinkhorn algorithm to find optimal couplings
between q0 and q1.

The Sinkhorn algorithm involve finding a
transport plan π. This will be a matrix that how
different parts of the distribution should be
rearranged.

OT-CFM
OT-CFM straightens flow paths.

This makes training and inference
more efficient.

If your flow paths are perfectly
straight, you will only need one
ODE step to map between q0 and
q1.

