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Introduction



Diffusion



Diffusion Overview
Diffusion models learn map from a Gaussian distribution to a distribution 
approximated with a dataset.

Multiple steps are used to execute this mapping.

ImageNet images generated using the EDM 2 diffusion model (FID = 1.91)

https://github.com/NVlabs/edm2


Forward Process
The forward process gradually adds noise to our starting image x0:

where t ∈ [0,T] is the timestep.

x0 x1 xT-1 xT



We then use a network f to predict x0, with parameters θ, to reverse this process:

where σ controls the amount of noise at each step.

Reverse Process

xT xT-1 x1 x0



This indirectly maximizes the the log-likelihood of the training data w.r.t. the 
network parameters:

In practice, we typically learn the reverse process using a neural network D which 
predicts noise instead of x0:

Training

* See Chapter 18  of "Understanding Deep Learning" by Simon Prince for full loss derivation



Inference
To step through from xT to x0 we repeatedly apply the following equation:

where σ = 0 leads to deterministic diffusion and σ > 0 results in stochastic 
diffusion.



2D Toy Example
To train our model, we give a network a 
linear combination of xT to x0 and train it 
to predict xT.

At inference time, we sample xT, then 
repeated apply our network to step 
towards x0.

* https://github.com/harveymannering/boilerplate_code/blob/main/diffusion_toy_example.ipynb

https://github.com/harveymannering/boilerplate_code/blob/main/diffusion_toy_example.ipynb


2D Toy Example
Deterministic Sampling (σ = 0) Stochastic Sampling (σ > 0)

* https://github.com/harveymannering/boilerplate_code/blob/main/diffusion_toy_example.ipynb

https://github.com/harveymannering/boilerplate_code/blob/main/diffusion_toy_example.ipynb


Algorithms

A summary of both training and inference can be seen below.



Practical Considerations

● The architecture must have the same input/output dimensions (e.g. U-Net).  
We must condition the network on the timestep t.

● Both training and inference can be very slow.  Latent Diffusion significantly 
speeds up both by doing diffusion/flow matching in the latent space of a VAE, 
effectively reducing the image dimensions.
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Flow Matching



Flow Matching
The problem we are trying to solve:

Given samples two distributions, q0 and 
q1, can we find a mapping that transforms 
q0 in to q1?

For this mapping, we can use a vector field 
ut(x) where t is between 0 and 1, and x is 
sample from the probability path p, that runs 
between q0 and q1.



Flow Matching
Think of ut(x) as an Ordinary Differential 
Equation (ODE).

Flow matching tries to learning the ut(x) with a 
neural network vθ

Unfortunately, calculating ut(x) in not tractable.



Conditional Flow Matching
However, ut(x|z) is tractable to calculate, giving the 
loss function

where z is a conditioning variable.

Furthermore, both loss function have the same 
gradients, meaning optimizing the latter, also 
optimizes the former.

Once we have learnt our network vθ, we can use an 
ODE solver to map from q0 and q1.



We can scale this up to higher dimensional distributions, such as image distributions.

If q0 is a Gaussian and q1 is an image distribution, we now have a generative model.

x0~q0 x1~q1x

Conditional Flow Matching



Basic Form a CFM
So how to we calculate x and ut?



Basic Form a CFM
So how to we calculate x and ut?

Firstly, we draw samples from x0~q0 and x1~q1 
at random.



Basic Form a CFM
So how to we calculate x and ut?

Firstly, we draw samples from x0~q0 and x1~q1 
at random.



Basic Form a CFM
So how to we calculate x and ut?

Firstly, we draw samples from x0~q0 and x1~q1 
at random.

where σ is a small amount of noise (≈0.01).



Basic Form a CFM

* https://github.com/harveymannering/boilerplate_code/blob/main/flow_matching_toy_example.ipynb

https://github.com/harveymannering/boilerplate_code/blob/main/flow_matching_toy_example.ipynb


CFM
If we train a model like this, then 
use an ODE solver to map from  
we get something like this.

However, flow paths are curved, 
meaning we need more steps in 
for our ODE solver to accurately 
map between q0 and q1.

* https://github.com/harveymannering/boilerplate_code/blob/main/flow_matching_toy_example.ipynb

https://github.com/harveymannering/boilerplate_code/blob/main/flow_matching_toy_example.ipynb


Connection to Rectified Flows
● CFM is equivalent to rectified flows, 

the only difference being that σ=0.
● State of the art text-to-image models 

currently use Rectified Flows (e.g.  
Stable Diffusion 3, FLUX.1, 
InstaFlow)

Image generated using FLUX.1 
model

https://www.runcomfy.com/comfyui-workflows/comfyui-flux-realismlora-workflow-photorealistic-ai-images
https://www.runcomfy.com/comfyui-workflows/comfyui-flux-realismlora-workflow-photorealistic-ai-images


Optimal Transport



Optimal Transport
How can map one distribution to another in such a way that minimises some 
displacement cost?

2-Wasserstein distance is used to measure the transport cost between 
distributions.  This distance can be expressed using our vector field ut.



Optimal Transport
The coupling π, describes for every 
combination of point between two 
distributions, the optimal amount of mass to 
move between the two distributions.

π is sometimes called as a transport plan.

Sinkhorn algorithm can be used to fine π.

Peyré and Marco. "Computational optimal transport". 2019

https://arxiv.org/pdf/1803.00567


Optimal Transport
The coupling π, describes for every 
combination of point between two 
distributions, the optimal amount of mass to 
move between the two distributions.

π is sometimes called as a transport plan.

Sinkhorn algorithm can be used to fine π.

Peyré and Marco. "Computational optimal transport". 2019

https://arxiv.org/pdf/1803.00567


OT-CFM
CFM randomly couples samples from x0~q0 
and x1~q1. 



OT-CFM
CFM randomly couples samples from x0~q0 
and x1~q1. 

Optimal Transport CFM (OT-CFM) uses the 
Sinkhorn algorithm to find optimal couplings 
between q0 and q1.

The Sinkhorn algorithm involve finding a 
transport plan π.  This will be a matrix that how 
different parts of the distribution should be 
rearranged.



OT-CFM
OT-CFM straightens flow paths.

This makes training and inference 
more efficient.

If your flow paths are perfectly 
straight, you will only need one 
ODE step to map between q0 and 
q1.


