Embeddings

Jonathon Hare

Vision, Learning and Control University of Southampton

Introduction

- Sparse versus dense representations; similarity; context
- Dimensionality reduction
- Word Embeddings
- Joint Embeddings

Problem statement

- Consider training a neural network on text
 - We need a vector representation of words
 - Obvious approach is One Hot Encoding into vectors of the same dimensionality as the vocabulary size
 - But, ...
 - Very big vectors (>171k words in English vocab)
 - No notion of synonymy; all terms orthogonal

Problem statement

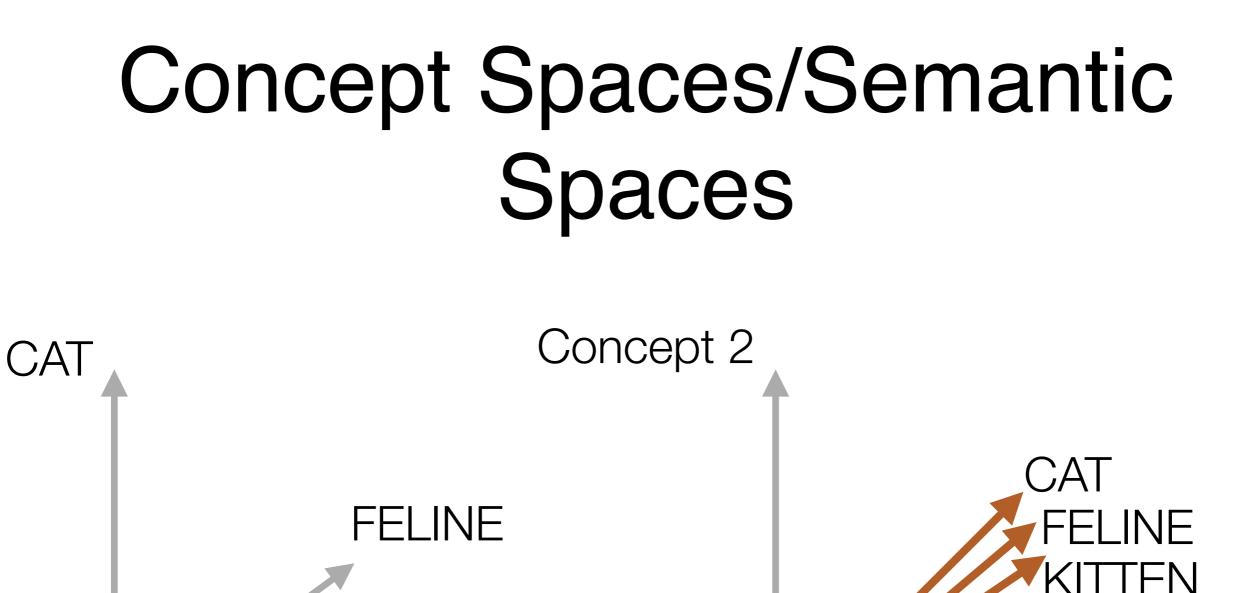
- We'd really like much lower dimensional vectors (far fewer weights)
- ... this is a **dimensionality reduction problem**
- Ideally vectors should capture similarity (cat->kitten should be closer than cat->dog)
 - ... we need to learn similarity

Dimensionality Reduction

- **Learned** dimensionality reduction can be easily achieved through a linear projection (potentially followed by a non-linearity)
 - e.g. a fully-connected layer

Learning Similarity: Distributional semantics

- Distributional Hypothesis:
 - words that are close in meaning will occur in similar pieces of text
- Exploit this to uncover hidden meaning
 - Latent Semantic Analysis
 - Word Embeddings



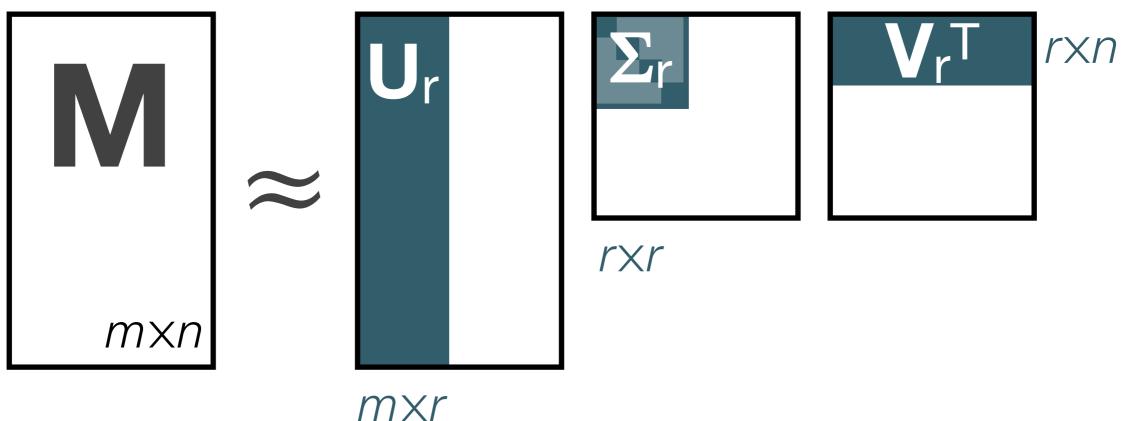
KITTEN

Concept 1

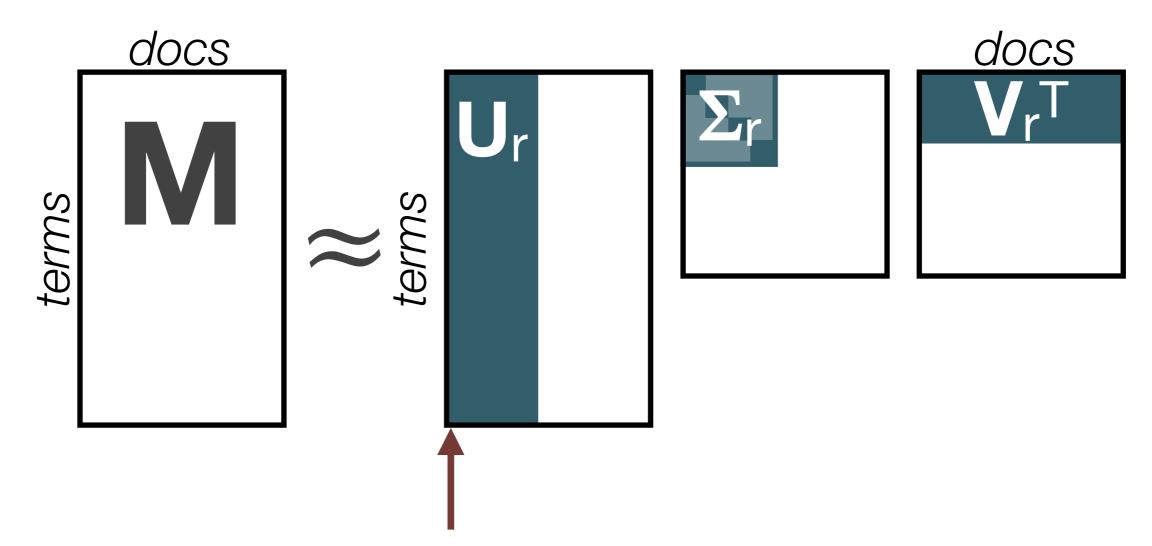
- Consider a term-document matrix which described occurrences of terms in documents
 - Clearly going to be sparse
 - Could be weighted (c.f. TF-IDF)

- LSA works by making a low-rank approximation under the following assumptions:
 - The original term-document matrix is **noisy**
 - anecdotal instances of terms are to be eliminated.
 - the approximated matrix is **de-noised**
 - The original term-document matrix is overly sparse relative to the "true" term-document matrix
 - We want to capture **synonymy**

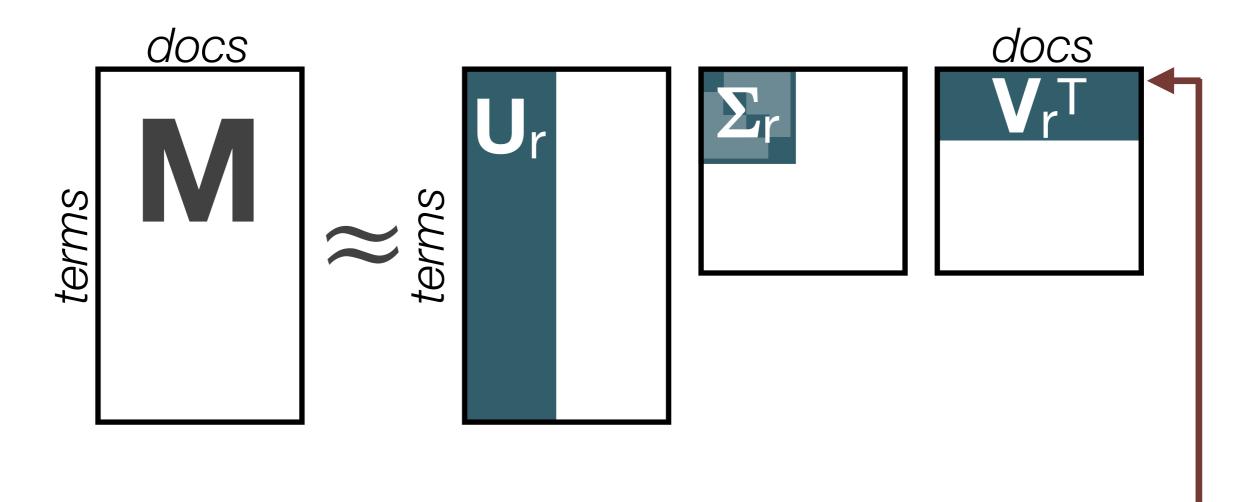
Truncated Singular Value Decomposition



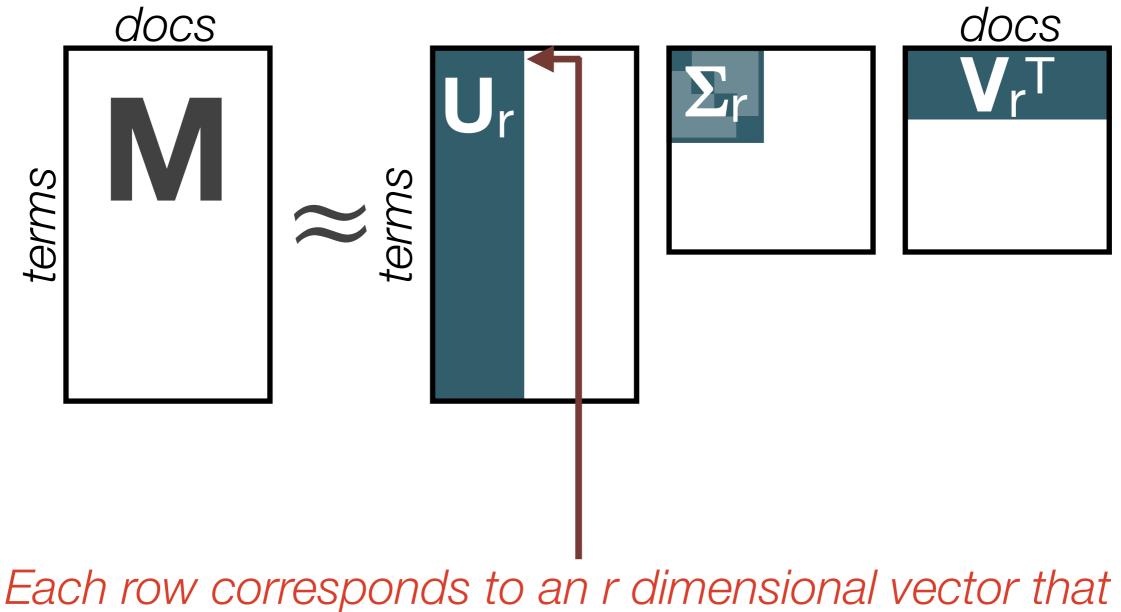
Truncated SVD considers only the **largest** r singular values (and corresponding left & right vectors)



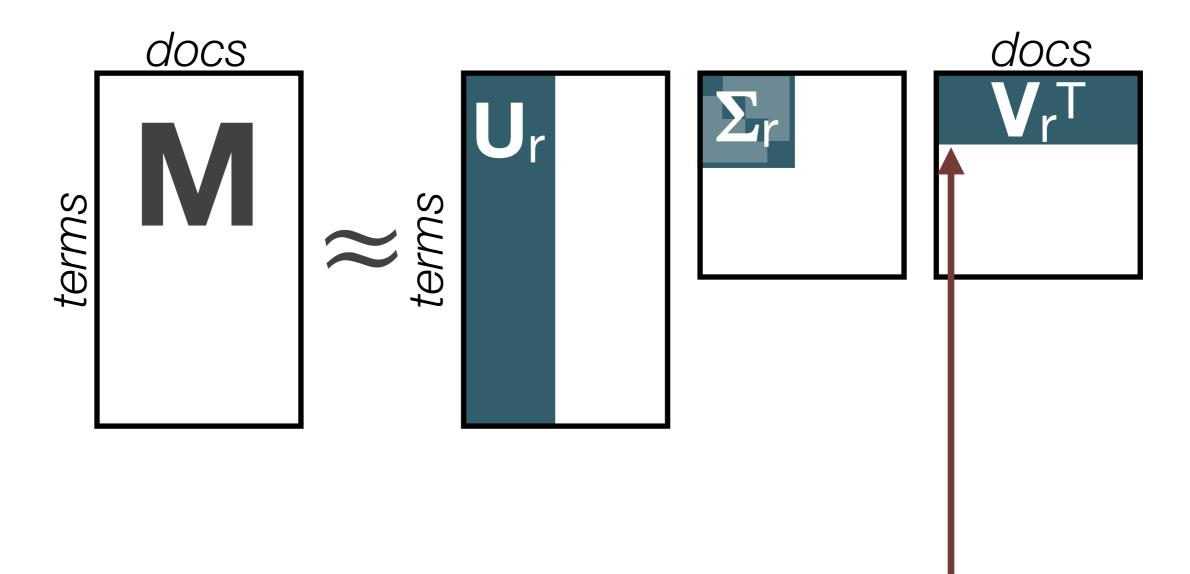
Each column corresponds to an eigenvector of **MM**[⊤] (i.e. proportional to covariance or correlation of the terms) These are the "**concepts**"



Each row corresponds to an eigenvector of **M**^T**M** (i.e. proportional to covariance or correlation of the documents) These are the "**concepts**"

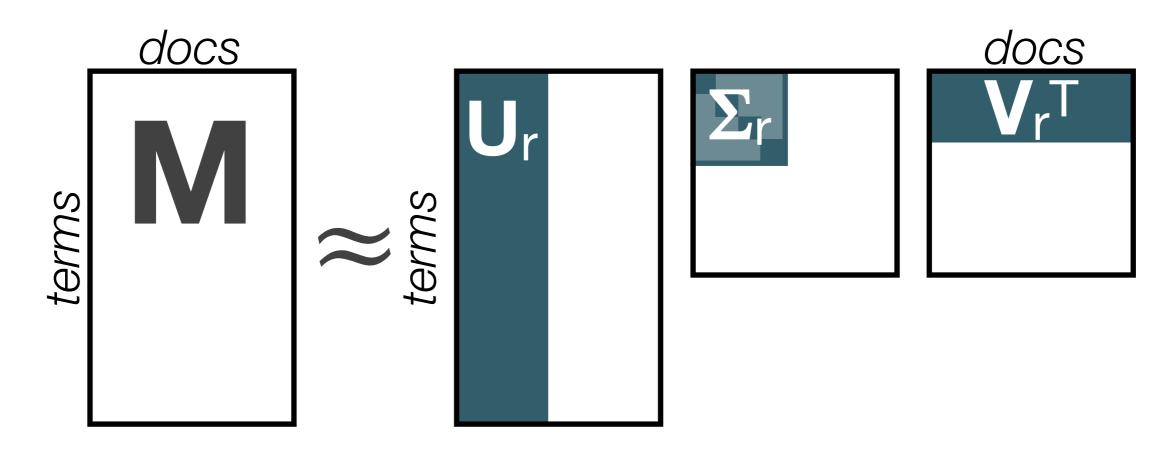


describes a term as a vector of weights with respect to the r concepts



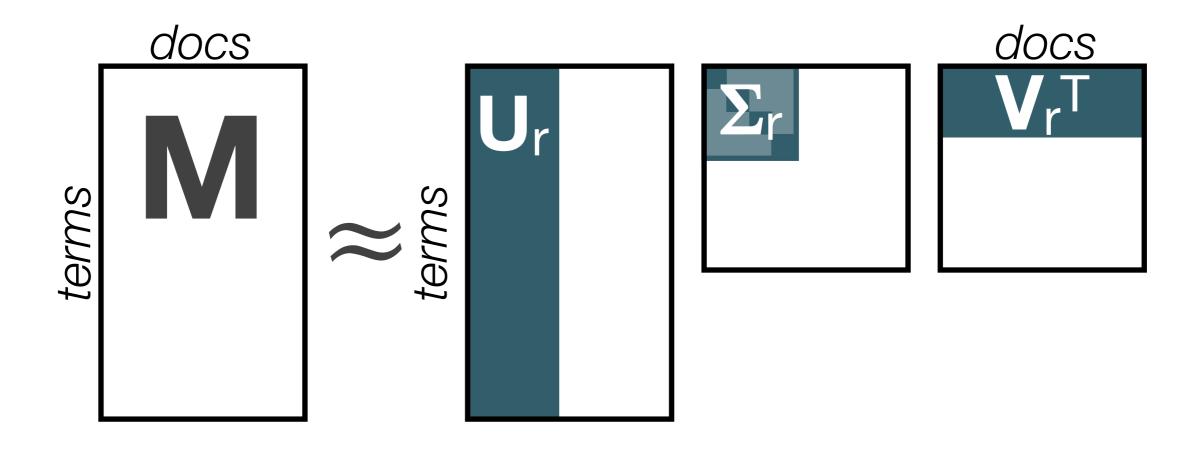
Each column corresponds to an r dimensional vector that describes a document as a vector of weights with respect to the r concepts

Important Note



The term-concepts and the document-concepts are not the same - they have the same dimensionality, but represent different spaces They are intrinsically linked though, and it is possible to project one into the other

What exactly is a concept?



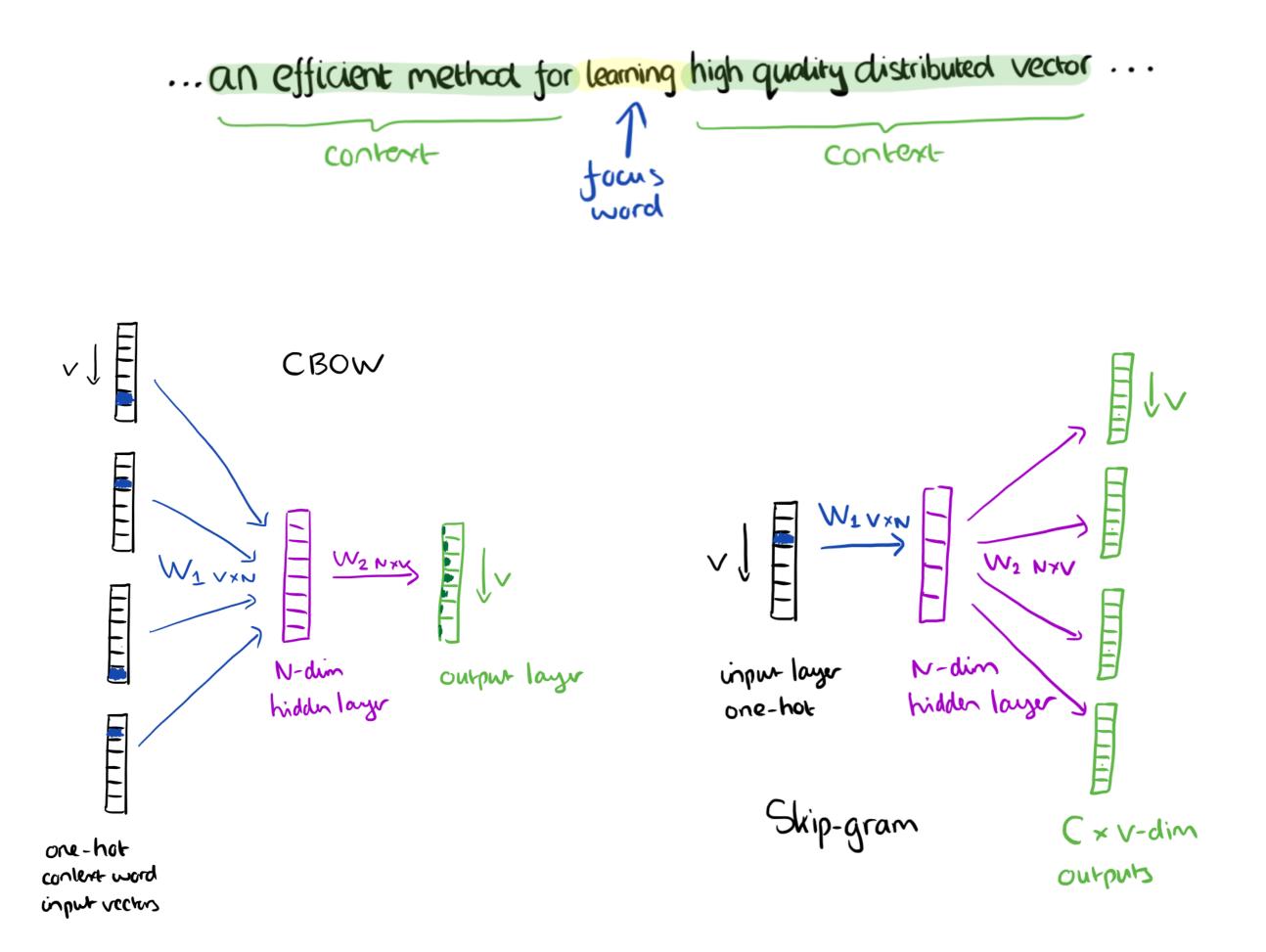
A linear combination of terms (or documents). Not necessarily "comprehensible" e.g. 1.3452 * **car** - 0.2828 * **bottle**

Word Embeddings

- Can we build a better vector representation of words?
 - Lower dimensionality (but dense)
 - Capturing synonymous words
 - What about capturing algebraic semantics?
 - word2vec("Brother") word2vec("Man") + word2vec("Woman") = word2vec("Sister")

Word Embeddings...

- Many models of mapping words to vectors have been proposed.
 - A pair of commonly used models is known as "word2vec" and was introduced by Mikolov *et al.* at Google
 - They're both shallow two-layer neural nets, but trained on *lots* of data
 - Ironically, although the paper introducing the models has over 27343 citations, it was never officially published after being rejected (and heavily slated by the reviewers) of ICLR 2013!
 - Another popular model is GloVe "Global Vectors for Word Representation" by Pennington *et al.*
 - All these models have all the features from the previous slides!
 - Note that practically speaking, you don't have to train the models you can just download a pretrained variant



Images from https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

word2vec limitations

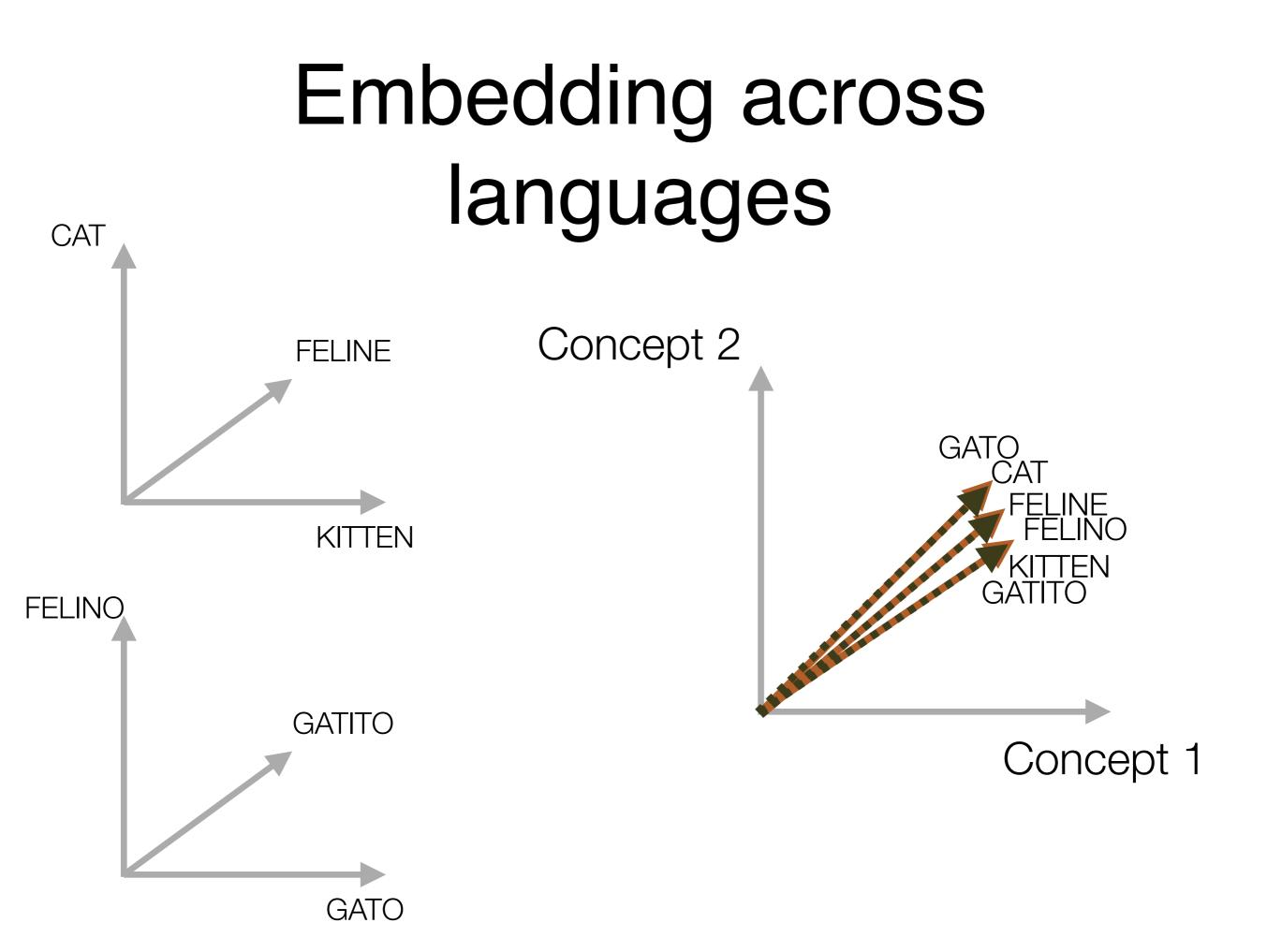
- word2vec works well, but doesn't deal with out of vocabulary (OOV) words
 - A newer model called FastText attempts to solve this problem by building the embeddings from character n-grams
 - The idea is that words with similar meaning often have similar sub-strings (e.g. locat[e/ing/ ion])

Implementation Note

- In PyTorch, we don't ever represent a word in one-hot form
 - Too expensive & unnecessary
 - Rather, the Embedding Layer, is implemented as a lookup-table between the input word index and the corresponding output vector
 - Can still be differentiated though of course as it's functionally equivalent to multiplication of the layer weights by an OHE vector

Embedding Layer

Mining semantic correspondences across feature domains



Cross-Language LSI

- Use a bilingual (or multilingual) training corpus to build a single term-document matrix
 - each document vector contains terms from the original language and its translation(s)

	CAT	KITTEN	FELINE	FELINO	GATO	GATITO	
doc1	1	0	0	0	1	0	
doc2	1	1	1	1	1	1	

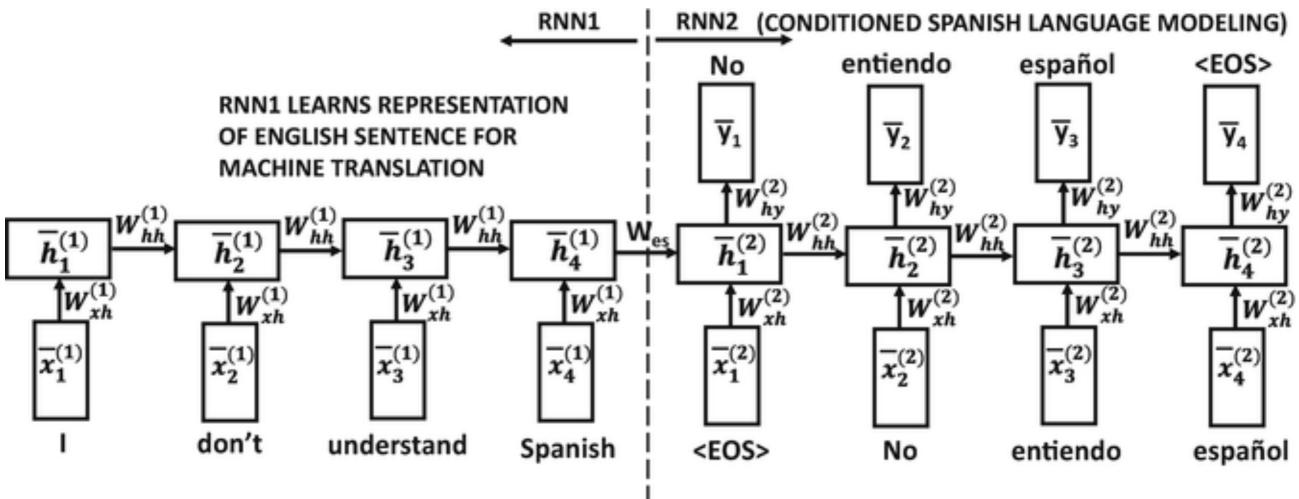
Cross-Language LSI

- Decompose with SVD as per standard LSI
- Perform queries by projecting into the lower dimensional space as before
 - but just use one language and set the rest to 0

	CAT	KITTEN	FELINE	FELINO	GATO	GATITO	
query	1	0	0	0	0	0	

 Obviously this still has a problem in the sense that all the indexed documents needed translation...

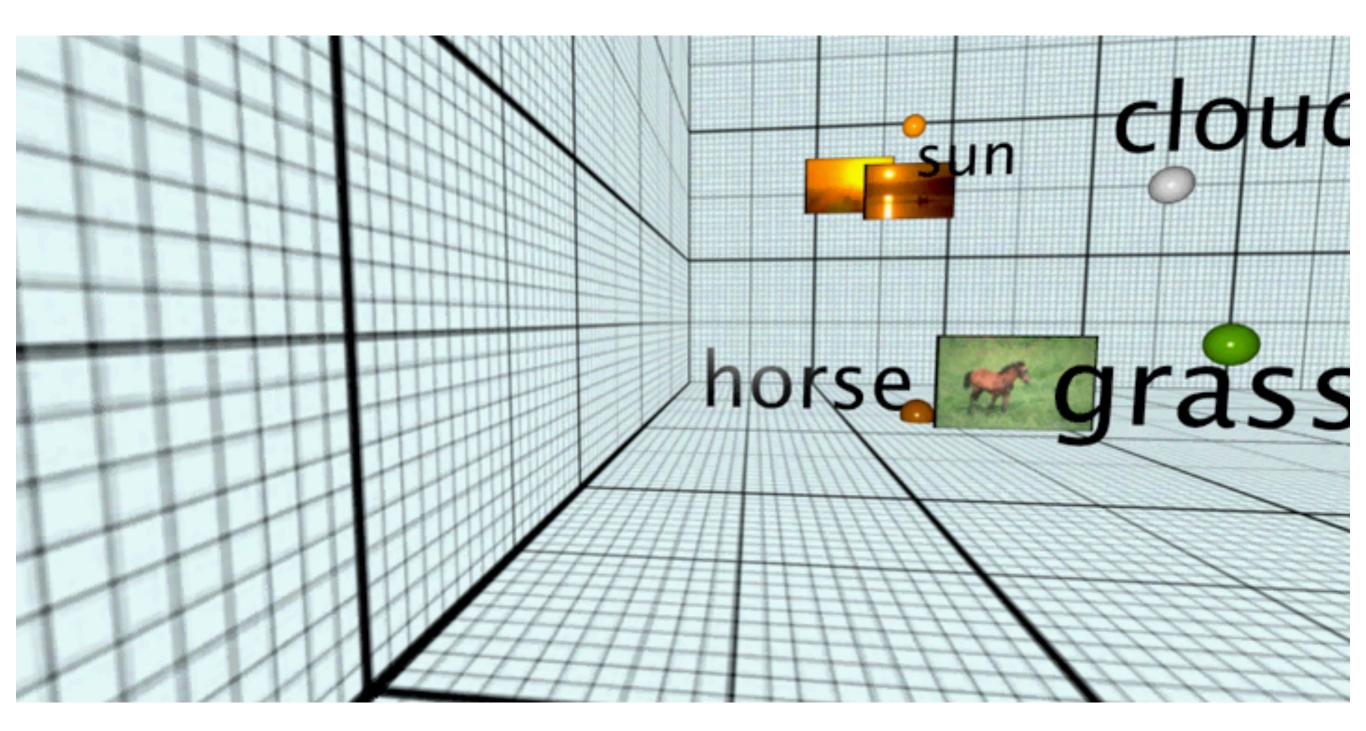
Sequence-Sequence Translation



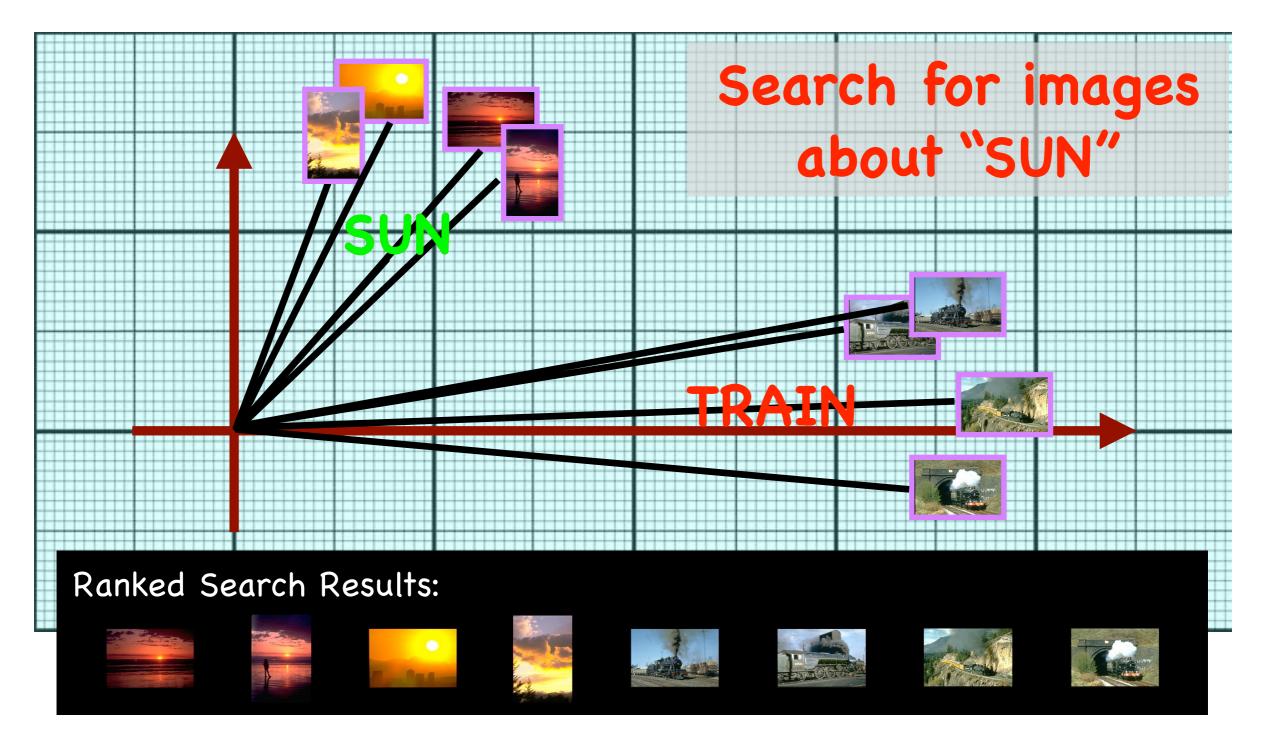
https://link.springer.com/chapter/10.1007/978-3-319-73531-3_10

Image-Concept Embedding

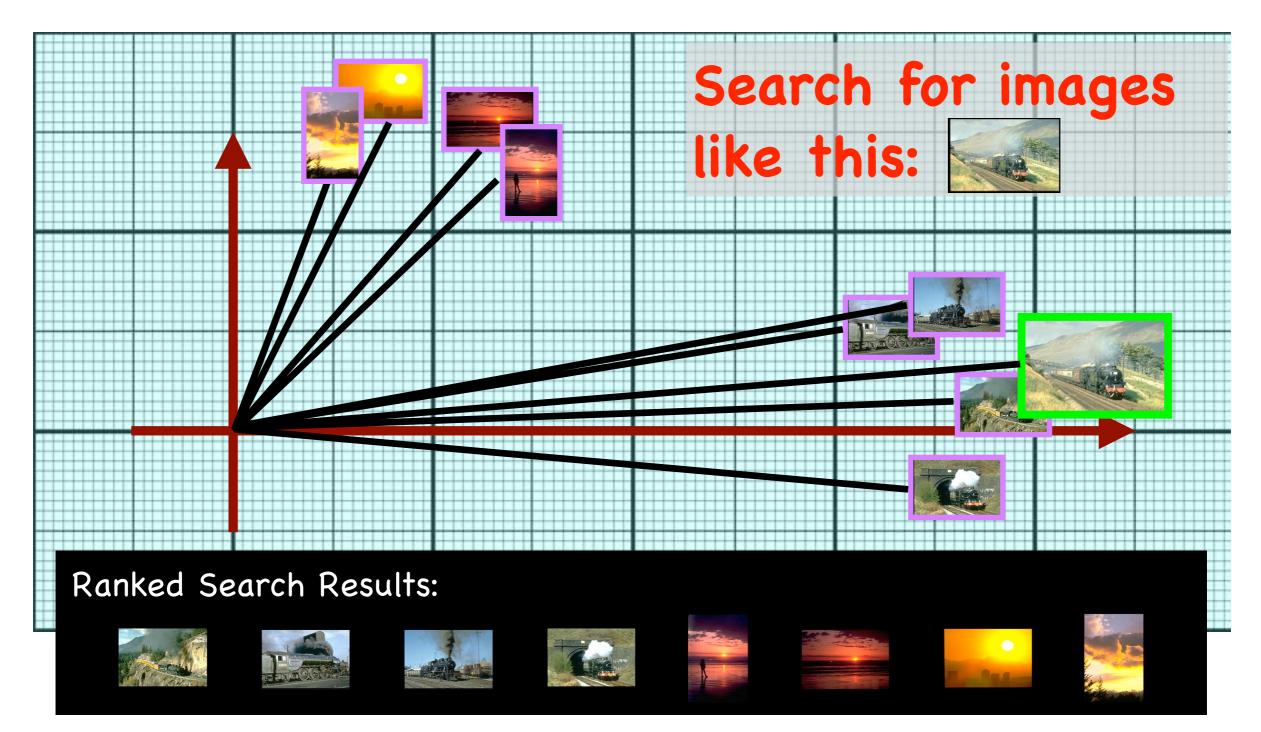
- Basic idea: Create a large multidimensional space in which images, keywords (or other metadata) and visual information can be placed.
- In the training stage learn how keywords are related to visual terms and images.
 - Place related visual terms, images and keywords close-together within the space.
- In the projection stage unannotated images can be placed in the space based upon the visual terms they contain.
 - The placement should be such that they lie near keywords that describe them.



Searching by Keyword



Searching by Image



Suggesting Keywords

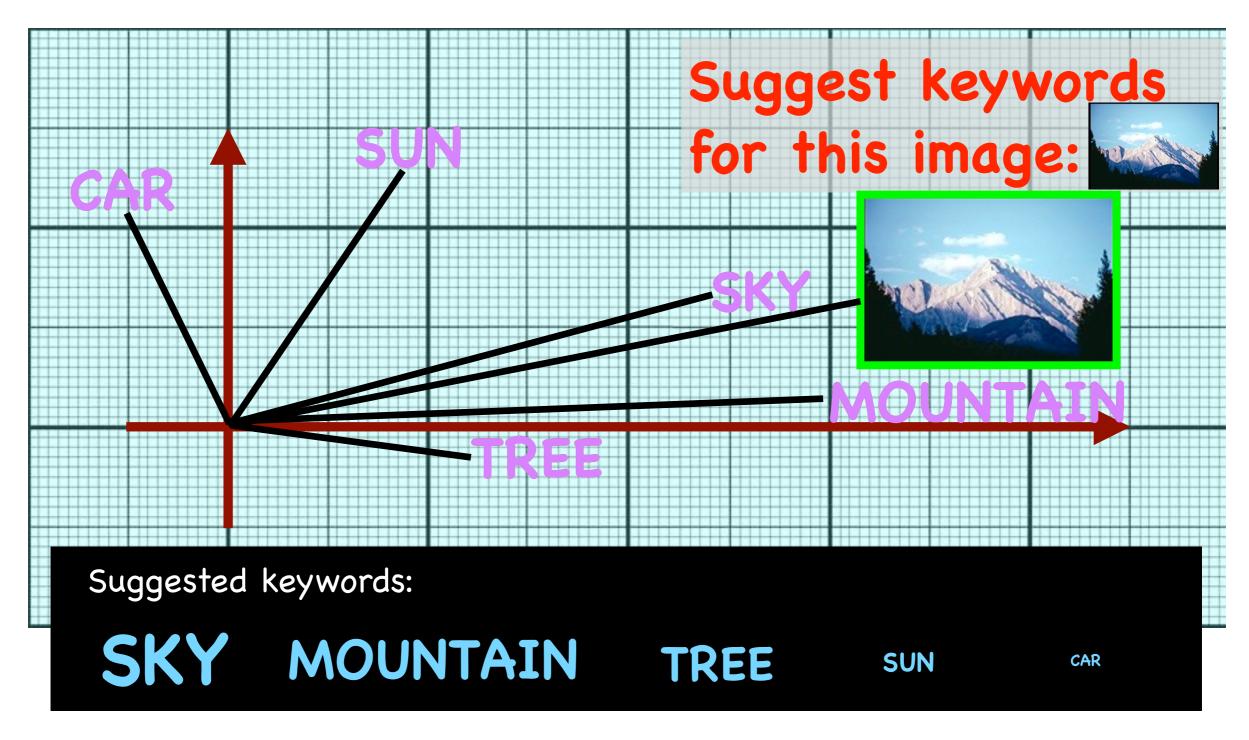
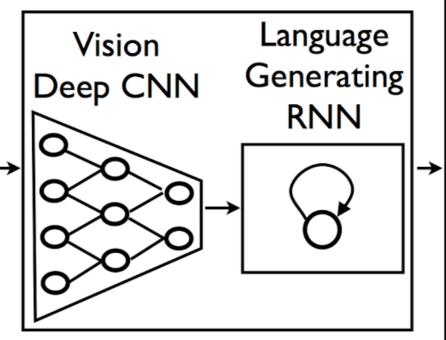


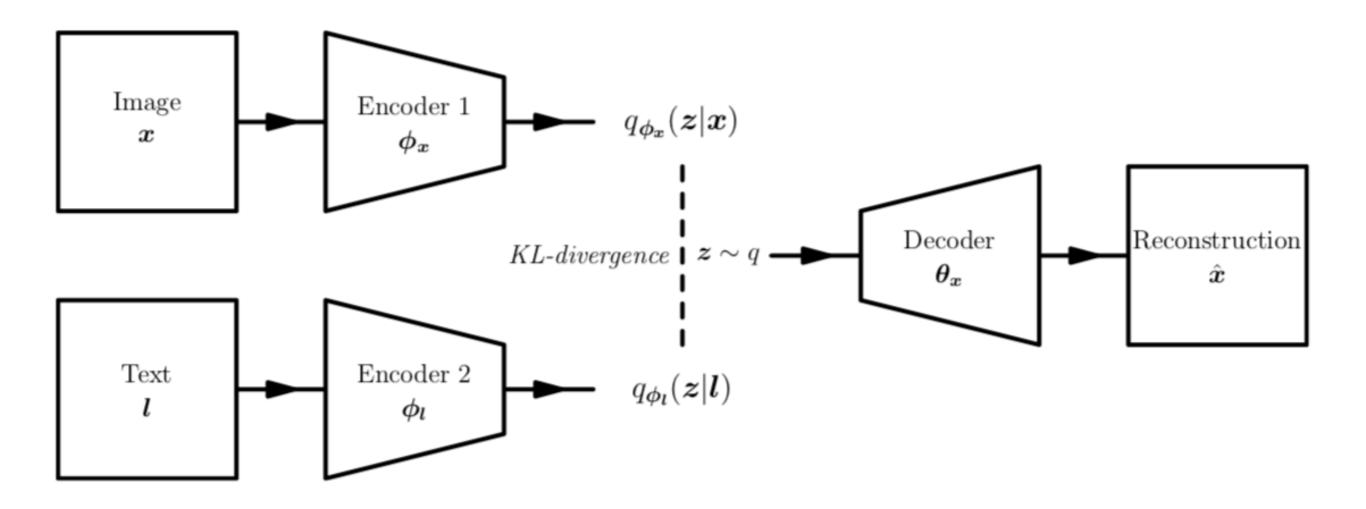
Image captioning



A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

Probabilistic Semantic Embedding



https://openreview.net/pdf?id=r1xwqjRcY7