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This is the exercise that you need to work through on your own after completing the seventh lab session.
You'll need to write up your results/answers/findings and submit this to ECS handin as a PDF document
along with the other lab exercises near the end of the module (1 pdf document per lab).

You should use no more than one side of A4 to cover your responses to this exercise. This exercise is worth
5% of your overall module grade.

1 Sequence-to-Sequence Modelling

Sequence-to-Sequence modelling allows one (potentially variable length) input sequence to be translated
to another output sequence (potentially of a different length) by transforming the input sequence into
a fixed length vector, and using this to drive the generation of the output sequence. There are lots of
algorithms and models that can achieve this, but a classic approach is the model proposed by Sutskever
et al (https://arxiv.org/abs/1409.3215), which uses LSTMs to encode the input to a pair of vec-
tors (the final hidden and cell states), and LSTMs to decode the pair of vectors into the desired output.
Sequence-to-sequence models gained popularity as (then) state-of-the-art methods for language translation.

1.1 Complete and train a sequence-to-sequence model (2 marks)

I’'ve implemented a fairly basic sequence-to-sequence model for a translation task and created a dataset
from which to train which has the following form:

e o= . o.=. .= —.=. ./ $| preface $
~ ./ ... .- .——. .——. —— ... $| e suppos$

Each line consists of an input sequence left of the | character, and output sequence on the right. The
" characters represent SOS (Start Of Sequence) tokens, and $ represents EOS (End Of Sequence). T've
made the code available to you in a colab notebook here: https://tinyurl.com/seq-2-seq.

Unfortunately I didn’t quite have time to finish it; it’s all complete except for the forward method of
the Encoder class. All the encoder needs to do is pass the input through the embedding and then into
the LSTM. The forward method should return the hidden state and the cell state of the LSTM as its
output. The output of the LSTM should be ignored as it’s not used in this model.

Finish my code and run it to train the model. In the report include the small snippet of code you
had to write and a plot of the loss curves duing training.




1.2 now use it! (2 marks)

The following function can be used to make the trained model to translate sequences:

def decode(code):

out = "'

for chunk in code.split('.
num = ds.encode_morse('".' + chunk + '_.$').unsqueeze (1)
pred = model (num.cuda (), maxlen=2)
pred = pred [1:].view(—1, pred_dim).argmax(—1)
out += ds.decode_alpha (pred.cpu())[:: —1]

return out

'2:

1.3 Sequence Lengths (1 mark)

The decode method in the previous question ‘chunked’ the input into small blocks before passing to the
model. How well does the model work with longer chunks®? How does this relate to the training data?
(Don’t spend long on this; just make one or two brief observations/comments in the report.)

%you need to be careful about the position of the chunk boundaries!




