
Lab 5 Exercise - A little Linear Regression

Jonathon Hare (jsh2@ecs.soton.ac.uk)

February 27, 2024

This is the exercise that you need to work through on your own after completing the fifth lab session.
You’ll need to write up your results/answers/findings and submit this to ECS handin as a PDF document
along with the other lab exercises near the end of the module (1 pdf document per lab).
You should use no more than one side of A4 to cover your responses to this exercise. This exercise is worth
5% of your overall module grade.

1 An initial attempt

In the lab exercise you built and trained a couple of CNNs for image classification. Your now going to try
something different and build some CNNs for image-to-vector regression task - in particular you’re going
to implement a network that takes an image of a scatter plot, and predicts the parameters of the line of
best fit.

The following code is used to generate the datasets for this task (get it in a useable form here: https:
//gist.github.com/jonhare/73a59dcc5416729548a086a983e81f07):

import torch
from t o r c h v i s i o n import t rans forms
from torch . u t i l s . data import Dataset

class MyDataset (Dataset) :
def i n i t (s e l f , s i z e =5000 , dim=40, random of f s e t =0):

super (MyDataset , s e l f) . i n i t ()
s e l f . s i z e = s i z e
s e l f . dim = dim
s e l f . random of f s e t = random of f s e t

def g e t i t e m (s e l f , index) :
i f index >= len (s e l f) :

raise IndexError (' {} index out o f range ' . format (s e l f . c l a s s . name))

r n g s t a t e = torch . g e t r n g s t a t e ()
torch . manual seed (index + s e l f . random of f s e t)

while True :
img = torch . z e r o s (s e l f . dim , s e l f . dim)
dx = torch . rand int (−10 ,10 , (1 ,) , dtype=torch . f loat)
dy = torch . rand int (−10 ,10 , (1 ,) , dtype=torch . f loat)
c = torch . rand int (−20 ,20 , (1 ,) , dtype=torch . f loat)

params = torch . cat ((dy/dx , c))
xy = torch . rand int (0 , img . shape [1] , (20 , 2) , dtype=torch . f loat)

1

xy [: , 1] = xy [: , 0] ∗ params [0] + params [1]

xy . round ()
xy = xy [xy [: , 1] > 0]
xy = xy [xy [: , 1] < s e l f . dim]
xy = xy [xy [: , 0] < s e l f . dim]

for i in range (xy . shape [0]) :
x , y = xy [i] [0] , s e l f . dim − xy [i] [1]
img [int (y) , int (x)]=1

i f img .sum() > 2 :
break

torch . s e t r n g s t a t e (r n g s t a t e)
return img . unsqueeze (0) , params

def l e n (s e l f) :
return s e l f . s i z e

t r a i n d a t a = MyDataset ()
va l da ta = MyDataset (s i z e =500 , random of f s e t =33333)
t e s t d a t a = MyDataset (s i z e =500 , random of f s e t =99999)

1.1 A simple CNN baseline (2 marks)

Implement the following CNN model, and train it using Adam (default parameters) for 100 epochs (use
a GPU and be prepared to wait 6 or 7 minutes!). Use shuffled batches of 128 items. State the loss
function you’re using. Comment on the performance of the model.

Convolution2D , channe l s =48, s i z e =3x3 , s t r i d e =1, padding=1
ReLU
Linear , 128 outputs
ReLU
Linear , 2 outputs

2 A second attempt

Clearly the CNN implemented in Section 1 has many parameters in its final hidden layers. One com-
mon way of reducing this is to use Global Max Pooling to flatten the feature maps into a vector (called
AdaptiveMaxPool2d in PyTorch).

2.1 A simple CNN with global pooling (1 mark)

Implement the following CNN model, and train it using Adam (default parameters) for 100 epochs. Use
shuffled batches of 128 items. Comment on the model performance.

Convolution2D , channe l s =48, s i z e =3x3 , s t r i d e =1, padding=1
ReLU
Convolution2D , channe l s =48, s i z e =3x3 , s t r i d e =1, padding=1
ReLU
Global Max Pool
Linear , 128 outputs
ReLU
Linear , 2 outputs

2

3 Something that actually works?

The two models so far likely have a few issues. We’re now going to try and fix this.

3.1 Let’s regress (2 marks)

Modify the model from Section 2 as follows:

1. Modify the number of input channels to the first convolutional layer to be 3 instead of 1

2. In the forward pass, before the first convolution, modify the input, x, using the following code:

idxx = torch . r e p e a t i n t e r l e a v e (
torch . arange (−20 ,20 , dtype=torch . f loat) . unsqueeze (0) / 40 . 0 ,
r epea t s =40, dim=0). to (x . dev i c e)

idxy = idxx . c l one () . t ()
idx = torch . s tack ([idxx , idxy]) . unsqueeze (0)
idx = torch . r e p e a t i n t e r l e a v e (idx , r epea t s=x . shape [0] , dim=0)
x = torch . cat ([x , idx] , dim=1)

Train the modified model using Adam (default parameters) for 100 epochs. Use shuffled batches of 128
items. Comment on the model performance. Describe the rationale for the modification that was
made.

3

