Train,
Validate,
Test

Vision
VLC= Learning avdLdc
Control

Recap of Basic Neural Networks

(and some Deep Network Fundamentals)

Jonathon Hare

Vision, Learning and Control
University of Southampton

Jonathon Hare COMP6258 2 /25



Types of Learning

@ Supervised Learning - learn to predict an output when given an input
vector

@ Unsupervised Learning - discover a good internal representation of the
input

@ Reinforcement Learning - learn to select an action to maximize the
expectation of future rewards (payoff)

@ Self-supervised Learning - learn with targets induced by a prior on the
unlabelled training data

@ Semi-supervised Learning - learn with few labelled examples and
many unlabelled ones

Jonathon Hare COMP6258 3/25

Two Types of Supervised Learning

@ Regression: The machine is asked predict k numerical values given
some input. The machine is a function f : R" — RX.

@ Classification: The machine is asked to specify which of k categories
some input belongs to.

e Multiclass classification - target is one of the k classes

e Multilabel classification - target is some number of the k classes

o In both cases, the machine is a function f : R” — {1,..., k} (although
it is most common for the learning algorithm to actually learn

f:R" — RK).
@ Note that there are lots of exceptions in the form the inputs (and
outputs) can take though! We'll see lots of variations in the coming
weeks.

Jonathon Hare COMP6258 4/25



How Supervised Learning Typically Works

@ Start by choosing a model-class: y = f(x; W) where the model-class
f is a way of using some numerical parameters, W, to map each
input vector x to a predicted output .

@ Learning means adjusting the parameters to reduce the discrepancy
between the true target output y on each training case and the
output y, predicted by the model.

Jonathon Hare COMP6258 5/25

Let’s look at a Multilayer Perceptron (without biases)...

Input Hidden Output
layer layer layer

0]_ —)5}1

02— ¥

Without loss of generality, we can write the above as:
y = g(f(x; W), W) = g(WF(Wwx))

where f and g are activation functions.
Jonathon Hare COMP6258 6/25



Common Activation Functions

o Identity

e Sigmoid (aka Logistic)

@ Hyperbolic Tangent (tanh)

@ Rectified Linear Unit (ReLU) (aka Threshold Linear)

Jonathon Hare COMP6258 7/25

Final layer activations

y =g(WOf(whx))

@ What form should the final layer function g take?
@ It depends on the task (and on the chosen loss function)...

o For regression it is typically linear (e.g. identity), but you might choose
others if you say wanted to clamp the range of the network.

e For binary classification (MLP has a single output), one would choose
Sigmoid

e For multilabel classification, typically one would choose Sigmoid

e For multiclass classification, typically you would use the Softmax
function

Jonathon Hare COMP6258 8/25



The softmax is an activation function used at the output layer of a neural
network that forces the outputs to sum to 1 so that they can represent a
probability distribution across a discrete mutually exclusive alternatives.
softmax(z); = Zjill = Vi=1,2,...,K
@ Note that unlike the other activation functions you've seen, softmax
makes reference to all the elements in the output.

@ The output of a softmax layer is a set of positive numbers which sum
up to 1 and can be thought of as a probability distribution.

@ Note:
ft i
dso0 (;nax(z) = softmax(z;)(1 — softmax(z;))
Zj
f i ..
0 softmax(z) = softmax(z;)(1(i = j) — softmax(z;))
0z
= softmax(z;)(d; — softmax(z;))
Jonathon Hare COMP6258 9/25

Ok, so let's talk loss functions

@ The choice of loss function depends on the task (e.g.
classification /regression /something else)

@ The choice also depends on the activation function of the last layer

e For numerical reasons (see Log-Sum-Exp in a few slides) many times
the activation is computed directly within the loss rather than being
part of the model

o Some classification losses require raw outputs (e.g. a linear layer) of
the network as their input

@ These are often called unnormalised log probabilities or logits

@ An example would be hinge-loss used to create a Support Vector
Machine that maximises the margin — e.g.:
Lhinge(¥,y) = max(0,1 — y - ¥) with a true label, y € {—1,1}, for
binary classification.

@ There are many different loss functions we might encounter (MSE,

Cross-Entropy, KL-Divergence, huber, L1 (MAE), CTC, Triplet, ...)
for different tasks.

Jonathon Hare COMP6258 10 /25



The Cost Function (measure of discrepancy)

Recall from Foundations of Machine Learning:

@ Mean Squared Error (MSE) loss for a single data point (here assumed
to be a vector, but equally applicable to a scalar) is given by
Imse(9,y) =2 iPi—yi) = —y) (7 —y)

@ We often multiply this by a constant factor of % — can anyone
guess/remember why?

® {ymse(y,y) is the predominant choice for regression problems with
linear activation in the last layer

@ For a classification problem with Softmax or Sigmoidal (or really
anything non-linear) activations, MSE can cause slow learning,
especially if the predictions are very far off the targets

e Gradients of /)se are proportional to the difference in target and
predicted multiplied by the gradient of the activation function?
e The Cross-Entropy loss function is generally a better choice in this case

http://neuralnetworksanddeeplearning.com /chap3.html
Jonathon Hare COMP6258 11 /25

Binary Cross-Entropy

For the binary classification case:
lece(y,y) = —ylog(y) — (1 —y)log(1 —9)

@ The cross-entropy cost function is non-negative, {gcg > 0

@ /gce ~ 0 when the prediction and targets are equal (i.e. y =0 and
y=0orwheny=1and y =1)

e With Sigmoidal final layer, gﬁs‘(—f) is proportional to just the error in

the output (¥ — y) and therefore, the larger the error, the faster the
network will learn!

@ Note that the BCE is the negative log likelihood of the Bernoulli
Distribution

Jonathon Hare COMP6258 12 /25



Binary Cross-Entropy — Intuition

@ The cross-entropy can be thought of as a measure of surprise.

@ Given some input x;, we can think of y; as the estimated probability
that x; belongs to class 1, and 1 — y; is the estimated probability that
it belongs to class 0.

@ Note the extreme case of infinite cross-entropy, if your model believes
that a class has 0 probability of occurrence, and yet the class appears
in the data, the ‘surprise’ of your model will be infinitely great.

Jonathon Hare COMP6258 13 /25

Binary Cross-Entropy for multiple labels

In the case of multi-label classification with a network with multiple
sigmoidal outputs you just sum the BCE over the outputs:

lace = — 3K Ik log(9k) + (1 — yi) log(L — 9]

where K is the number of classes of the classification problem, y € RX.

Jonathon Hare COMP6258 14 /25



Numerical Stability: The Log-Sum-Exp trick

lece(Y,y) = —ylog(y) — (1 —y)log(1l - 9)

@ Consider what might happen early in training when the model might
confidently predict a positive example as negative
o y=0(z2) 0 = z<<0
e if y is small enough, it will become 0 due to limited precision of
floating-point representations
e but then log(y) = —inf, and everything will break!

@ To tackle this problem implementations usually combine the sigmoid
computation and BCE into a single loss function that you would apply
to a network with linear outputs (e.g. BCEWithLogitsLoss).

@ Internally, a trick called ‘log-sum-exp’ is used to shift the centre of an

exponential sum so that only numerical underflow can potentially
happen, rather than overflow?.

e Ultimately this means you'll always get a numerically reasonable result
(and will avoid NaNs and Infs originating from this point).

*https: //www.xarg.org /2016 /06 /the-log-sum-exp-trick-in-machine-learning/
Jonathon Hare COMP6258 15 /25

Multiclass classification with Softmax Outputs

@ Softmax can be thought of making the K outputs of the network
mimic a probability distribution.
@ The target label y could also be represented as a distribution with a
single 1 and zeros everywhere else.
e e.g. they are “one-hot encoded”.

@ In such a case, the obvious loss function is the negative log likelihood
of the Categorical distribution (aka Multinoulli, Generalised Bernoulli,
Multinomial with one sample)3: fy;; = — Zle vk log Vi

e Note that in practice as yx is zero for all but one class you don't
actually do this summation, and if y is an integer class index you can
write £y = —log ¥, .

@ Analogously to what we saw for BCE, Log-Sum-Exp can be used for
better numerical stability.

e PyTorch combines LogSoftmax with NLL in one loss and calls this
“Categorical Cross-Entropy” (so you would use this with a linear
output layer)

3Note: Keras calls this function ‘Categorical Cross-Entropy’; you would need to have a

Softmax output layer to use this
Jonathon Hare COMP6258 16 /25




Reminder: Gradient Descent

o Define total loss as £ =}, ,)ep ¢(g(x, 8),y) for some loss function
¢, dataset D and model g with learnable parameters 6.

@ Define how many passes over the data to make (each one known as
an Epoch)

@ Define a learning rate 7

Gradient Descent updates the parameters 8 by moving them in the
direction of the negative gradient with respect to the total loss £ by the
learning rate n multiplied by the gradient:

for each Epoch:
9(—9—77V9£

Jonathon Hare COMP6258 17 /25

Reminder: Stochastic Gradient Descent

@ Define loss function ¢, dataset D and model g with learnable
parameters 6.

@ Define how many passes over the data to make (each one known as
an Epoch)

@ Define a learning rate 1

Stochastic Gradient Descent updates the parameters @ by moving them in
the direction of the negative gradient with respect to the loss of a single
item /¢ by the learning rate n multiplied by the gradient:

for each Epoch:
for each (x,y) € D:
0« 6 —nVel

Jonathon Hare COMP6258 18 /25



A Quick Introduction to Tensors

Broadly speaking a tensor is defined as a linear mapping between sets of
algebraic objects*.

A tensor T can be thought of as a generalization of scalars, vectors and
matrices to a single algebraic object.

We can just think of this as a multidimensional array®.

@ A 0D tensor is a scalar
A 1D tensor is a vector

°
@ A 2D tensor is a matrix

@ A 3D tensor can be thought of as a vector of identically sized matrices
°

A 4D tensor can be thought of as a matrix of identically sized
matrices or a sequence of 3D tensors

*This statement is always entirely true
>This statement will upset mathematicians and physicists because its not always true for

them (but it is for us!).
Jonathon Hare COMP6258 19 /25

Aside: Tensor Decompositions

@ Just in the same way a matrix can be decomposed into a product of
matrices (EVD, SVD, QR, LU, Cholesky, ...), there are tensor
decompositions:

e PARAFAC / Canonical polyadic / HO-SVD / Tucker
e These have found their way into some deep learning models as a form
of structural regularisation or weight reduction

Jonathon Hare COMP6258 20/25



Operations on Tensors in PyTorch

@ PyTorch lets you do all the standard matrix operations on 2D tensors

e including important things you might not yet have seen like the
hadamard product of two N x M matrices: A® B)

@ You can do element-wise add/divide/subtract/multiply to ND-tensors
e and even apply scalar functions element-wise (log, sin, exp, ...)

@ you can slice, reshape, and even index a single element (generally
don’t do that!)

@ PyTorch often lets you broadcast operations (just like in numpy)

e if a PyTorch operation supports broadcast, then its Tensor arguments
can be automatically expanded to be of equal sizes (without making
copies of the data).

®|mportant - read and understand this after the lab next week:

https://pytorch.org/docs/stable/notes/broadcasting.html
Jonathon Hare COMP6258 21/25

Tensors, batches and vectorisation

@ The reality of training a model is that we neither use gradient descent

or stochastic gradient descent; we do something in-between called
mini-batch SGD.

@ This works on batches of data (e.g. small subsets of the training set)
@ These batches are assembled into a tensor

@ Broadcasting is used to apply operations/functions to all the samples
in the batch tensor in parallel to compute a loss vector

@ the loss vector is summed/averaged using a vectorised method (e.g.

.sum())

Jonathon Hare COMP6258 22 /25



Tensor implementation

It's important to understand something about how tensors are
implemented in software and particularly how memory copies can be
avoided...

Jonathon Hare COMP6258 23/25

We are siamese...

An important and clever trick:

Jonathon Hare COMP6258 24 /25



Homework

PyTorch Tensor 101:
https://colab.research.google.com/gist/jonhare/
d98813b2224dddbb234d2031510878e1/notebook. ipynb

Jonathon Hare COMP6258 25/25


https://colab.research.google.com/gist/jonhare/d98813b2224dddbb234d2031510878e1/notebook.ipynb
https://colab.research.google.com/gist/jonhare/d98813b2224dddbb234d2031510878e1/notebook.ipynb

