
Train,
Validate,
Test

Recap of Basic Neural Networks
(and some Deep Network Fundamentals)

Jonathon Hare

Vision, Learning and Control
University of Southampton

Jonathon Hare COMP6258 2 / 25



Types of Learning

Supervised Learning - learn to predict an output when given an input
vector

Unsupervised Learning - discover a good internal representation of the
input

Reinforcement Learning - learn to select an action to maximize the
expectation of future rewards (payoff)

Self-supervised Learning - learn with targets induced by a prior on the
unlabelled training data

Semi-supervised Learning - learn with few labelled examples and
many unlabelled ones

Jonathon Hare COMP6258 3 / 25

Two Types of Supervised Learning

Regression: The machine is asked predict k numerical values given
some input. The machine is a function f : Rn → Rk .

Classification: The machine is asked to specify which of k categories
some input belongs to.

Multiclass classification - target is one of the k classes
Multilabel classification - target is some number of the k classes
In both cases, the machine is a function f : Rn → {1, ..., k} (although
it is most common for the learning algorithm to actually learn
f̂ : Rn → Rk).

Note that there are lots of exceptions in the form the inputs (and
outputs) can take though! We’ll see lots of variations in the coming
weeks.

Jonathon Hare COMP6258 4 / 25



How Supervised Learning Typically Works

Start by choosing a model-class: ŷ = f (x ;W ) where the model-class
f is a way of using some numerical parameters, W , to map each
input vector x to a predicted output ŷ .

Learning means adjusting the parameters to reduce the discrepancy
between the true target output y on each training case and the
output ŷ , predicted by the model.

Jonathon Hare COMP6258 5 / 25

Let’s look at a Multilayer Perceptron (without biases)...

x1

x2

x3

x4

h1

h2

h3

h4

h5

o1 ŷ1

o2 ŷ2

w
(1)
ji

w
(2)
kj

Hidden
layer

Input
layer

Output
layer

Without loss of generality, we can write the above as:

ŷ = g(f (x ;W (1));W (2)) = g(W (2)f (W (1)x))

where f and g are activation functions.
Jonathon Hare COMP6258 6 / 25



Common Activation Functions

Identity

Sigmoid (aka Logistic)

Hyperbolic Tangent (tanh)

Rectified Linear Unit (ReLU) (aka Threshold Linear)

Jonathon Hare COMP6258 7 / 25

Final layer activations

ŷ = g(W (2)f (W (1)x))

What form should the final layer function g take?

It depends on the task (and on the chosen loss function)...

For regression it is typically linear (e.g. identity), but you might choose
others if you say wanted to clamp the range of the network.
For binary classification (MLP has a single output), one would choose
Sigmoid
For multilabel classification, typically one would choose Sigmoid
For multiclass classification, typically you would use the Softmax
function

Jonathon Hare COMP6258 8 / 25



Softmax

The softmax is an activation function used at the output layer of a neural
network that forces the outputs to sum to 1 so that they can represent a
probability distribution across a discrete mutually exclusive alternatives.

softmax(z)i = ezi∑K
j=1 e

zj
∀i = 1, 2, . . . ,K

Note that unlike the other activation functions you’ve seen, softmax
makes reference to all the elements in the output.

The output of a softmax layer is a set of positive numbers which sum
up to 1 and can be thought of as a probability distribution.

Note:

∂ softmax(z)i
∂zi

= softmax(zi )(1− softmax(zi ))

∂ softmax(z)i
∂zj

= softmax(zi )(1(i = j)− softmax(zj))

= softmax(zi )(δij − softmax(zj))

Jonathon Hare COMP6258 9 / 25

Ok, so let’s talk loss functions

The choice of loss function depends on the task (e.g.
classification/regression/something else)

The choice also depends on the activation function of the last layer

For numerical reasons (see Log-Sum-Exp in a few slides) many times
the activation is computed directly within the loss rather than being
part of the model
Some classification losses require raw outputs (e.g. a linear layer) of
the network as their input

These are often called unnormalised log probabilities or logits
An example would be hinge-loss used to create a Support Vector
Machine that maximises the margin — e.g.:
ℓhinge(ŷ , y) = max(0, 1− y · ŷ) with a true label, y ∈ {−1, 1}, for
binary classification.

There are many different loss functions we might encounter (MSE,
Cross-Entropy, KL-Divergence, huber, L1 (MAE), CTC, Triplet, ...)
for different tasks.

Jonathon Hare COMP6258 10 / 25



The Cost Function (measure of discrepancy)

Recall from Foundations of Machine Learning:

Mean Squared Error (MSE) loss for a single data point (here assumed
to be a vector, but equally applicable to a scalar) is given by
ℓMSE (ŷ , y) =

∑
i (ŷi − yi )

2 = (ŷ − y)⊤(ŷ − y)
We often multiply this by a constant factor of 1

2 — can anyone
guess/remember why?

ℓMSE (ŷ , y) is the predominant choice for regression problems with
linear activation in the last layer

For a classification problem with Softmax or Sigmoidal (or really
anything non-linear) activations, MSE can cause slow learning,
especially if the predictions are very far off the targets

Gradients of ℓMSE are proportional to the difference in target and
predicted multiplied by the gradient of the activation function1

The Cross-Entropy loss function is generally a better choice in this case

1http://neuralnetworksanddeeplearning.com/chap3.html
Jonathon Hare COMP6258 11 / 25

Binary Cross-Entropy

For the binary classification case:

ℓBCE (ŷ , y) = −y log(ŷ)− (1− y) log(1− ŷ)

The cross-entropy cost function is non-negative, ℓBCE > 0

ℓBCE ≈ 0 when the prediction and targets are equal (i.e. y = 0 and
ŷ = 0 or when y = 1 and ŷ = 1)

With Sigmoidal final layer, ∂ℓBCE

∂W (2)
i

is proportional to just the error in

the output (ŷ − y) and therefore, the larger the error, the faster the
network will learn!

Note that the BCE is the negative log likelihood of the Bernoulli
Distribution

Jonathon Hare COMP6258 12 / 25



Binary Cross-Entropy — Intuition

The cross-entropy can be thought of as a measure of surprise.

Given some input xi , we can think of ŷi as the estimated probability
that xi belongs to class 1, and 1− ŷi is the estimated probability that
it belongs to class 0.

Note the extreme case of infinite cross-entropy, if your model believes
that a class has 0 probability of occurrence, and yet the class appears
in the data, the ‘surprise’ of your model will be infinitely great.

Jonathon Hare COMP6258 13 / 25

Binary Cross-Entropy for multiple labels

In the case of multi-label classification with a network with multiple
sigmoidal outputs you just sum the BCE over the outputs:

ℓBCE = −
∑K

k=1[yk log(ŷk) + (1− yk) log(1− ŷk)]

where K is the number of classes of the classification problem, ŷ ∈ RK .

Jonathon Hare COMP6258 14 / 25



Numerical Stability: The Log-Sum-Exp trick

ℓBCE (ŷ , y) = −y log(ŷ)− (1− y) log(1− ŷ)

Consider what might happen early in training when the model might
confidently predict a positive example as negative

ŷ = σ(z) ≈ 0 =⇒ z << 0
if ŷ is small enough, it will become 0 due to limited precision of
floating-point representations
but then log(ŷ) = − inf, and everything will break!

To tackle this problem implementations usually combine the sigmoid
computation and BCE into a single loss function that you would apply
to a network with linear outputs (e.g. BCEWithLogitsLoss).

Internally, a trick called ‘log-sum-exp’ is used to shift the centre of an
exponential sum so that only numerical underflow can potentially
happen, rather than overflow2.

Ultimately this means you’ll always get a numerically reasonable result
(and will avoid NaNs and Infs originating from this point).

2https://www.xarg.org/2016/06/the-log-sum-exp-trick-in-machine-learning/
Jonathon Hare COMP6258 15 / 25

Multiclass classification with Softmax Outputs

Softmax can be thought of making the K outputs of the network
mimic a probability distribution.
The target label y could also be represented as a distribution with a
single 1 and zeros everywhere else.

e.g. they are “one-hot encoded”.

In such a case, the obvious loss function is the negative log likelihood
of the Categorical distribution (aka Multinoulli, Generalised Bernoulli,

Multinomial with one sample)3: ℓNLL = −
∑K

k=1 yk log ŷk
Note that in practice as yk is zero for all but one class you don’t
actually do this summation, and if y is an integer class index you can
write ℓNLL = − log ŷy .

Analogously to what we saw for BCE, Log-Sum-Exp can be used for
better numerical stability.

PyTorch combines LogSoftmax with NLL in one loss and calls this
“Categorical Cross-Entropy” (so you would use this with a linear
output layer)

3Note: Keras calls this function ‘Categorical Cross-Entropy’; you would need to have a
Softmax output layer to use this

Jonathon Hare COMP6258 16 / 25



Reminder: Gradient Descent

Define total loss as L =
∑

(x ,y)∈D ℓ(g(x ,θ), y) for some loss function
ℓ, dataset D and model g with learnable parameters θ.

Define how many passes over the data to make (each one known as
an Epoch)

Define a learning rate η

Gradient Descent updates the parameters θ by moving them in the
direction of the negative gradient with respect to the total loss L by the
learning rate η multiplied by the gradient:

for each Epoch:

θ ← θ − η∇θL

Jonathon Hare COMP6258 17 / 25

Reminder: Stochastic Gradient Descent

Define loss function ℓ, dataset D and model g with learnable
parameters θ.

Define how many passes over the data to make (each one known as
an Epoch)

Define a learning rate η

Stochastic Gradient Descent updates the parameters θ by moving them in
the direction of the negative gradient with respect to the loss of a single
item ℓ by the learning rate η multiplied by the gradient:

for each Epoch:

for each (x , y) ∈ D:

θ ← θ − η∇θℓ

Jonathon Hare COMP6258 18 / 25



A Quick Introduction to Tensors

Broadly speaking a tensor is defined as a linear mapping between sets of
algebraic objects4.
A tensor T can be thought of as a generalization of scalars, vectors and
matrices to a single algebraic object.
We can just think of this as a multidimensional array5.

A 0D tensor is a scalar

A 1D tensor is a vector

A 2D tensor is a matrix

A 3D tensor can be thought of as a vector of identically sized matrices

A 4D tensor can be thought of as a matrix of identically sized
matrices or a sequence of 3D tensors

. . .

4This statement is always entirely true
5This statement will upset mathematicians and physicists because its not always true for
them (but it is for us!).

Jonathon Hare COMP6258 19 / 25

Aside: Tensor Decompositions

Just in the same way a matrix can be decomposed into a product of
matrices (EVD, SVD, QR, LU, Cholesky, ...), there are tensor
decompositions:

PARAFAC / Canonical polyadic / HO-SVD / Tucker
These have found their way into some deep learning models as a form
of structural regularisation or weight reduction

Jonathon Hare COMP6258 20 / 25



Operations on Tensors in PyTorch

PyTorch lets you do all the standard matrix operations on 2D tensors

including important things you might not yet have seen like the
hadamard product of two N ×M matrices: A⊙ B)

You can do element-wise add/divide/subtract/multiply to ND-tensors

and even apply scalar functions element-wise (log, sin, exp, ...)

you can slice, reshape, and even index a single element (generally
don’t do that!)

PyTorch often lets you broadcast operations (just like in numpy)

if a PyTorch operation supports broadcast, then its Tensor arguments
can be automatically expanded to be of equal sizes (without making
copies of the data).6

6Important - read and understand this after the lab next week:
https://pytorch.org/docs/stable/notes/broadcasting.html

Jonathon Hare COMP6258 21 / 25

Tensors, batches and vectorisation

The reality of training a model is that we neither use gradient descent
or stochastic gradient descent; we do something in-between called
mini-batch SGD.

This works on batches of data (e.g. small subsets of the training set)

These batches are assembled into a tensor

Broadcasting is used to apply operations/functions to all the samples
in the batch tensor in parallel to compute a loss vector

the loss vector is summed/averaged using a vectorised method (e.g.
.sum())

Jonathon Hare COMP6258 22 / 25



Tensor implementation

It’s important to understand something about how tensors are
implemented in software and particularly how memory copies can be
avoided...

Jonathon Hare COMP6258 23 / 25

We are siamese...

An important and clever trick:

Jonathon Hare COMP6258 24 / 25



Homework

PyTorch Tensor 101:
https://colab.research.google.com/gist/jonhare/

d98813b2224dddbb234d2031510878e1/notebook.ipynb

Jonathon Hare COMP6258 25 / 25

https://colab.research.google.com/gist/jonhare/d98813b2224dddbb234d2031510878e1/notebook.ipynb
https://colab.research.google.com/gist/jonhare/d98813b2224dddbb234d2031510878e1/notebook.ipynb

