Follow the Gradient

The power of differentiation

Jonathon Hare

Vision, Learning and Control
University of Southampton

- The big idea: optimisation by following gradients
- Recap: what are gradients and how do we find them?
- Recap: Singular Value Decomposition and its applications
- Example: Computing SVD using gradients - The Netflix Challenge

The big idea: optimisation by following gradients

- Fundamentally, we're interested in machines that we train by optimising parameters
- How do we select those parameters?
- In deep learning/differentiable programming we typically define an objective function that we minimise (or maximise) with respect to those parameters
- This implies that we're looking for points at which the gradient of the objective function is zero w.r.t the parameters

The big idea: optimisation by following gradients

- Gradient based optimisation is a big field!
- First order methods, second order methods, subgradient methods...
- With deep learning we're primarily interested in first-order methods ${ }^{1}$.
- Primarily using variants of gradient descent: a function $F(\boldsymbol{x})$ has a minima ${ }^{2}$ (or a saddle-point) at a point $\boldsymbol{x}=\boldsymbol{a}$ where \boldsymbol{a} is given by applying $\boldsymbol{a}_{n+1}=\boldsymbol{a}_{n}-\alpha \nabla F\left(\boldsymbol{a}_{n}\right)$ until convergence from some initial point \mathbf{a}_{0}.
> ${ }^{1}$ Second order gradient optimisers are potentially better, but for systems with many variables are currently impractical as they require computing the Hessian.
> ${ }^{2}$ not necessarily global or unique

Recap: what are gradients and how do we find them?

The derivative in 1D

- Recall that the gradient of a straight line is

$$
\frac{\Delta y}{\Delta x} .
$$

- For an arbitrary real-valued function, $f(a)$, we can approximate the derivative, $f^{\prime}(a)$ using the gradient of the secant line defined by $(a, f(a))$ and a point a small distance, h, away $(a+h, f(a+h)): f^{\prime}(a) \approx \frac{f(a+h)-f(a)}{h}$.
- This expression is 'Newton's Quotient' or 'Fermat's Difference Quotient'.
- As h becomes smaller, the approximated
 derivative becomes more accurate.
- If we take the limit as $h \rightarrow 0$, then we have an exact expression for the derivative:
$\frac{d f}{d a}=f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.

Recap: what are gradients and how do we find them?

The derivative of $y=x^{2}$ from first principles

$$
\begin{aligned}
y & =x^{2} \\
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{x^{2}+h^{2}+2 h x-x^{2}}{h} \\
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{h^{2}+2 h x}{h} \\
\frac{d y}{d x} & =\lim _{h \rightarrow 0}(h+2 x) \\
\frac{d y}{d x} & =2 x
\end{aligned}
$$

Recap: what are gradients and how do we find them?

Aside: numerical approximation of the derivative

- For numerical computation of derivatives it is better to use a "centralised" definition of the derivative:
- $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}$
- The bit inside the limit is known as the symmetric difference quotient
- For small values of h this has less error than the standard one-sided difference
 quotient.

Recap: what are gradients and how do we find them?

- If you are going to use difference quotients to estimate derivatives you need to be aware of potential rounding errors due to floating point representations.
- Calculating derivatives this way using less than 64-bit precision is rarely going to be useful. (Numbers are not represented exactly, so even if h is represented exactly, $x+h$ will probably not be)
- You need to pick an appropriate h - too small and the subtraction will have a large rounding error!

Recap: what are gradients and how do we find them?

Derivatives of deeper functions

- Deep learning is all about optimising deeper functions; functions that are compositions of other functions

$$
\text { - e.g. } z=f \circ g(x)=f(g(x))
$$

- The chain rule of calculus tells us how to differentiate compositions of functions:
- $\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}$

Recap: what are gradients and how do we find them?

Example: differentiating $z=x^{4}$

Note that this is a silly example that just serves to demonstrate the principle!

$$
\begin{aligned}
z & =x^{4} \\
z & =\left(x^{2}\right)^{2}=y^{2} \quad \text { where } \quad y=x^{2} \\
\frac{d z}{d x} & =\frac{d z}{d y} \frac{d y}{d x}=(2 y)(2 x)=\left(2 x^{2}\right)(2 x)=4 x^{3}
\end{aligned}
$$

Equivalently, from first principles:

$$
\begin{aligned}
z & =x^{4} \\
\frac{d z}{d x} & =\lim _{h \rightarrow 0} \frac{(x+h)^{4}-x^{4}}{h} \\
\frac{d z}{d x} & =\lim _{h \rightarrow 0} \frac{h^{4}+4 h^{3} x+6 h^{2} x^{2}+4 h x^{3}+x^{4}-x^{4}}{h} \\
\frac{d z}{d x} & =\lim _{h \rightarrow 0} h^{3}+4 h^{2} x+6 h x^{2}+4 x^{3}=4 x^{3}
\end{aligned}
$$

Recap: what are gradients and how do we find them?

Vector functions

- What if we're dealing with a vector function, $\boldsymbol{y}(t)$?
- This can be split into its constituent coordinate functions:

$$
\boldsymbol{y}(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)
$$

- Thus the derivative is a vector (the 'tangent vector'), $\boldsymbol{y}^{\prime}(t)=\left(y_{1}^{\prime}(t), \ldots, y_{n}^{\prime}(t)\right)$, which consists of the derivatives of the coordinate functions.
- Equivalently, $\boldsymbol{y}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\boldsymbol{y}(t+h)-\boldsymbol{y}(t)}{h}$ if the limit exists.

Recap: what are gradients and how do we find them?

- What if the function we're trying to deal with has multiple variables ${ }^{3}$ (e.g. $f(x, y)=x^{2}+x y+y^{2}$)?
- This expression has a pair of partial derivatives, $\frac{\partial f}{\partial x}=2 x+y$ and $\frac{\partial f}{\partial y}=x+2 y$, computed by differentiating with respect to each variable x and y whilst holding the other(s) constant.
- In general, the partial derivative of a function $f\left(x_{1}, \ldots, x_{n}\right)$ at a point $\left(a_{1}, \ldots, a_{n}\right)$ is given by:
$\frac{\partial f}{\partial x_{i}}\left(a_{1}, \ldots, a_{n}\right)=\lim _{h \rightarrow 0} \frac{f\left(a_{1} \ldots, a_{i}+h, \ldots, a_{n}\right)-f\left(a_{1} \ldots, a_{i}, \ldots, a_{n}\right)}{h}$.
- The vector of partial derivatives of a scalar-value multivariate function, $f\left(x_{1}, \ldots, x_{n}\right)$ at a point $\left(a_{1}, \ldots, a_{n}\right)$, can be arranged into a vector: $\nabla f\left(a_{1}, \ldots, a_{n}\right)=\left(\frac{\partial f}{\partial x_{1}}\left(a_{1}, \ldots, a_{n}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(a_{1}, \ldots, a_{n}\right)\right)$.
- This is the gradient of f at a.
- In the case of a vector-valued multivariate function, the partial derivatives form a matrix called the Jacobian.

[^0]
Recap: what are gradients and how do we find them?

Functions of vectors and matrices: partial differentiation

- For the kinds of functions (and programs) that we'll look at optimising in this course have a number of typical properties:
- They are scalar-valued
- We'll look at programs with multiple losses, but ultimately we can just consider optimising with respect to the sum of the losses.
- They involve multiple variables, which are often wrapped up in the form of vectors or matrices, and more generally tensors.
- How will we find the gradients of these?

Recap: what are gradients and how do we find them?

The chain rule for vectors

Suppose that $\boldsymbol{x} \in \mathbb{R}^{m}, \boldsymbol{y} \in \mathbb{R}^{n}, g$ maps from \mathbb{R}^{m} to \mathbb{R}^{n} and f maps from \mathbb{R}^{n} to \mathbb{R}.
If $\boldsymbol{y}=g(\boldsymbol{x})$ and $z=f(\boldsymbol{y})$, then

$$
\frac{\partial z}{\partial x_{i}}=\sum_{j} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}}
$$

Equivalently, in vector notation:

$$
\nabla_{\boldsymbol{x}} z=\left(\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}}\right)^{\top} \nabla_{\boldsymbol{y}} z
$$

where $\frac{\partial y}{\partial x}$ is the $n \times m$ Jacobian matrix of g.

Recap: what are gradients and how do we find them?

The chain rule for Tensors

- Conceptually, the simplest way to think about gradients of tensors is to imagine flattening them into vectors, computing the vector-valued gradient and then reshaping the gradient back into a tensor.
- In this way we're still just multiplying Jacobians by gradients.
- More formally, consider the gradient of a scalar z with respect to a tensor \mathbf{X} to be denoted as $\nabla_{\mathbf{X}} z$.
- Indices into \mathbf{X} now have multiple coordinates, but we can generalise by using a single variable i to represent the complete tuple of indices.
- For all index tuples $i,\left(\nabla_{\mathrm{x}}\right)_{i}$ gives $\frac{\partial z}{\partial \mathrm{x}_{i}}$.
- Thus, if $\mathbf{Y}=g(\mathbf{X})$ and $z=f(\mathbf{Y})$ then $\nabla_{\mathbf{x}} z=\sum_{j}\left(\nabla_{\mathbf{x}} Y_{j}\right) \frac{\partial z}{\partial Y_{j}}$.

Recap: what are gradients and how do we find them?

- Let $\boldsymbol{D}=\boldsymbol{X W}$ where the rows of $\boldsymbol{X} \in \mathbb{R}^{n \times m}$ contain some fixed features, and $\boldsymbol{W} \in \mathbb{R}^{m \times h}$ is a matrix of weights.
- Also let $\mathcal{L}=f(\boldsymbol{D})$ be some scalar function of \boldsymbol{D} that we wish to minimise.
- What are the derivatives of \mathcal{L} with respect to the weights \boldsymbol{W} ?

Recap: what are gradients and how do we find them?

Example: $\nabla_{w} f(X W)$

- Start by considering a specific weight, $W_{u v}: \frac{\partial \mathcal{L}}{\partial W_{u v}}=\sum_{i, j} \frac{\partial \mathcal{L}}{\partial D_{i j}} \frac{\partial D_{i j}}{\partial W_{u v}}$.
- We know that $\frac{\partial D_{i j}}{\partial W_{u v}}=0$ if $j \neq v$ because $D_{i j}$ is the dot product of row i of \boldsymbol{X} and column j of \boldsymbol{W}.
- Therefore, we can simplify the summation to only consider cases where $j=v: \sum_{i, j} \frac{\partial \mathcal{L}}{\partial D_{i j}} \frac{\partial D_{i j}}{\partial W_{u v}}=\sum_{i} \frac{\partial \mathcal{L}}{\partial D_{i v}} \frac{\partial D_{i v}}{\partial W_{u v}}$.
- What is $\frac{\partial D_{i v}}{\partial W_{u v}}$?

$$
\begin{aligned}
D_{i v} & =\sum_{k=1}^{m} X_{i k} W_{k v} \\
\frac{\partial D_{i v}}{\partial W_{u v}} & =\frac{\partial}{\partial W_{u v}} \sum_{k=1}^{m} X_{i k} W_{k v}=\sum_{k=1}^{m} \frac{\partial}{\partial W_{u v}} X_{i k} W_{k v} \\
\therefore \frac{\partial D_{i v}}{\partial W_{u v}} & =X_{i u}
\end{aligned}
$$

Recap: what are gradients and how do we find them?

- Putting every together, we have: $\frac{\partial \mathcal{L}}{\partial W_{u v}}=\sum_{i} \frac{\partial \mathcal{L}}{\partial D_{i v}} X_{i u}$.
- As we're summing over multiplications of scalars, we can change the order: $\frac{\partial \mathcal{L}}{\partial W_{u v}}=\sum_{i} X_{i u} \frac{\partial \mathcal{L}}{\partial D_{i v}}$.
- and note that the sum over i is doing a dot product with row u and column v if we transpose $X_{i u}$ to $X_{u i}^{\top}: \frac{\partial \mathcal{L}}{\partial W_{u v}}=\sum_{i} X_{u i}^{\top} \frac{\partial \mathcal{L}}{\partial D_{i v}}$.
- We can then see that if we want this for all values of \boldsymbol{W} it simply generalises to: $\frac{\partial \mathcal{L}}{\partial \boldsymbol{W}}=\boldsymbol{X}^{\top} \frac{\partial \mathcal{L}}{\partial \boldsymbol{D}}$.

Recap: what are gradients and how do we find them?

STOP! What does a gradient actually mean?

- In your early calculus lessons you likely had it hammered into you that gradients represent rates of change of functions.
- This is of course totally true...
- But, it isn't a particularly useful way to think about the gradients of a loss with respect to the weights of a parameterised function.
- The gradient of the loss with respect to a parameter tells you how much the loss will change with a small perturbation to that parameter.

Recap: Singular Value Decomposition and its applications

Let's now change direction - we're going to look at an early success story resulting from using some differentiation and the Singular Value Decomposition (SVD).

For complex \boldsymbol{A} :

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}
$$

where \boldsymbol{V}^{*} is the conjugate transpose of \boldsymbol{V}.
For real A:

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}
$$

Recap: Singular Value Decomposition and its applications

- SVD has many uses:
- Computing the Eigendecomposition:
- Eigenvectors of $\boldsymbol{A A ^ { \top }}$ are columns of \boldsymbol{U},
- Eigenvectors of $\boldsymbol{A}^{\top} \boldsymbol{A}$ are columns of \boldsymbol{V},
- and the non-zero values of $\boldsymbol{\Sigma}$ are the square roots of the non-zero eigenvalues of both $\boldsymbol{A A ^ { \top }}$ and $\boldsymbol{A}^{\top} \boldsymbol{A}$.
- Dimensionality reduction
- ...use to compute PCA
- Computing the Moore-Penrose Pseudoinverse
- for real $\boldsymbol{A}: \boldsymbol{A}^{+}=\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{\top}$ where $\boldsymbol{\Sigma}^{+}$is formed by taking the reciprocal of every non-zero diagonal element and transposing the result.
- Low-rank approximation and matrix completion
- if you take the ρ columns of \boldsymbol{U}, and the ρ rows of \boldsymbol{V}^{\top} corresponding to the ρ largest singular values, you can form the matrix $\boldsymbol{A}_{\rho}=\boldsymbol{U}_{\rho} \boldsymbol{\Sigma}_{\rho} \boldsymbol{V}_{\rho}^{\top}$ which will be the best rank- ρ approximation of the original \boldsymbol{A} in terms of the Frobenius norm.

Example: Computing SVD using gradients - The Netflix Challenge

- There are many standard ways of computing the SVD:
- e.g. 'Power iteration', or 'Arnoldi iteration' or 'Lanczos algorithm' coupled with the 'Gram-Schmidt process' for orthonormalisation
- but, these don't necessarily scale up to really big problems
- e.g. computing the SVD of a sparse matrix with 17770 rows, 480189 columns and 100480507 non-zero entries!
- this corresponds to the data provided by Netflix when they launched the Netflix Challenge in 2006.
- OK, so what can you do?
- The 'Simon Funk' solution: realise that there is a really simple (and quick) way to compute the SVD by following gradients...

Example: Computing SVD using gradients - The Netflix Challenge

Deriving a gradient-descent solution to SVD

- One of the definitions of rank- ρ SVD of a matrix \boldsymbol{A} is that it minimises reconstruction error in terms of the Frobenius norm.
- Without loss of generality we can write SVD as a 2-matrix decomposition $\boldsymbol{A}=\hat{\boldsymbol{U}} \hat{\boldsymbol{V}}^{T}$ by rolling in the square roots of $\boldsymbol{\Sigma}$ to both $\hat{\boldsymbol{U}}$ and $\hat{\boldsymbol{V}}: \hat{\boldsymbol{U}}=\boldsymbol{U} \boldsymbol{\Sigma}^{0.5}$ and $\hat{\boldsymbol{V}}^{\top}=\boldsymbol{\Sigma}^{0.5} \boldsymbol{V}^{\top}$.
- Then we can define the decomposition as finding $\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\left\|\boldsymbol{A}-\hat{\boldsymbol{U}} \hat{\boldsymbol{V}}^{\top}\right\|_{\mathrm{F}}^{2}\right)$

Example: Computing SVD using gradients - The Netflix Challenge
 Deriving a gradient-descent solution to SVD

Start by expanding our optimisation problem:

$$
\begin{aligned}
\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\left\|\boldsymbol{A}-\hat{\boldsymbol{U}} \hat{\boldsymbol{V}}^{\top}\right\|_{F}^{2}\right) & =\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\sum_{r} \sum_{c}\left(A_{r c}-\hat{U}_{r} \hat{V}_{c}\right)^{2}\right) \\
& =\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\sum_{r} \sum_{c}\left(A_{r c}-\sum_{p=1}^{\rho} \hat{U}_{r p} \hat{V}_{c p}\right)^{2}\right)
\end{aligned}
$$

Let $e_{r c}=A_{r c}-\sum_{p=0}^{\rho} \hat{U}_{r p} \hat{V}_{c p}$ denote the error. Then, our problem becomes:

$$
\text { Minimise } J=\sum_{r} \sum_{c} e_{r c}^{2}
$$

We can then differentiate with respect to specific variables $\hat{U}_{r q}$ and $\hat{V}_{c q}$

Example: Computing SVD using gradients - The Netflix

 ChallengeDeriving a gradient-descent solution to SVD
We can then differentiate with respect to specific variables $\hat{U}_{r q}$ and $\hat{V}_{c q}$:

$$
\begin{aligned}
& \frac{\partial J}{\partial \hat{U}_{r q}}=\sum_{r} \sum_{c} 2 e_{r c} \frac{\partial e}{\partial \hat{U}_{r q}}=-2 \sum_{r} \sum_{c} \hat{V}_{c q} e_{r c} \\
& \frac{\partial J}{\partial \hat{V}_{c q}}=\sum_{r} \sum_{c} 2 e_{r c} \frac{\partial e}{\partial \hat{V}_{c q}}=-2 \sum_{r} \sum_{c} \hat{U}_{r q} e_{r c}
\end{aligned}
$$

and use this as the basis for a gradient descent algorithm:

$$
\begin{aligned}
& \hat{U}_{r q} \Leftarrow \hat{U}_{r q}+\lambda \sum_{r} \sum_{c} \hat{V}_{c q} e_{r c} \\
& \hat{V}_{c q} \Leftarrow \hat{V}_{c q}+\lambda \sum_{r} \sum_{c} \hat{U}_{r q} e_{r c}
\end{aligned}
$$

Example: Computing SVD using gradients - The Netflix
 Challenge

Deriving a gradient-descent solution to SVD

- A stochastic version of this algorithm (updates on one single item of \boldsymbol{A} at a time) helped win the Netflix Challenge competition in 2009.
- It was both fast and memory efficient

[^0]: ${ }^{3} \mathrm{~A}$ multivariate function

