
Attention
is all
you need

A little attention, please?

Jonathon Hare

Vision, Learning and Control
University of Southampton

Jonathon Hare Attention 2 / 14



Core idea: Attending to part of a vector or tensor

Jonathon Hare Attention 3 / 14

Static attention

X̂ = softmax(W)X

or, factorised,
X̂ = softmax(W1W2)X

Jonathon Hare Attention 4 / 14



Dynamic Attention

X̂ = f (Z,θ)X

or, factorised,
X̂ = f (Zf ,θf )g(Zg ,θg )X

Jonathon Hare Attention 5 / 14

(Dynamic) Attention vs Self-attention

In regular attention, the weights applied to X are computed using
some additional auxiliary input (e.g. Z)

Self-attention is only computed as a function of X (equivalently
Z = X)

Jonathon Hare Attention 6 / 14



Dynamic Attention Example - Seq2Seq models

https://link.springer.com/chapter/10.1007/978-3-319-73531-3_10
Jonathon Hare Attention 7 / 14

Dynamic Attention Example - Seq2Seq models

Published as a conference paper at ICLR 2015

The decoder is often trained to predict the next word yt0 given the context vector c and all the
previously predicted words {y1, · · · , yt0�1}. In other words, the decoder defines a probability over
the translation y by decomposing the joint probability into the ordered conditionals:

p(y) =

TY

t=1

p(yt | {y1, · · · , yt�1} , c), (2)

where y =
�
y1, · · · , yTy

�
. With an RNN, each conditional probability is modeled as

p(yt | {y1, · · · , yt�1} , c) = g(yt�1, st, c), (3)

where g is a nonlinear, potentially multi-layered, function that outputs the probability of yt, and st is
the hidden state of the RNN. It should be noted that other architectures such as a hybrid of an RNN
and a de-convolutional neural network can be used (Kalchbrenner and Blunsom, 2013).

3 LEARNING TO ALIGN AND TRANSLATE

In this section, we propose a novel architecture for neural machine translation. The new architecture
consists of a bidirectional RNN as an encoder (Sec. 3.2) and a decoder that emulates searching
through a source sentence during decoding a translation (Sec. 3.1).

3.1 DECODER: GENERAL DESCRIPTION

x1 x2 x3 xT

+
αt,1
αt,2 αt,3

αt,T

yt-1 yt

h1 h2 h3 hT

h1 h2 h3 hT

st-1 s t

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the t-th tar-
get word yt given a source
sentence (x1, x2, . . . , xT ).

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(yi|y1, . . . , yi�1,x) = g(yi�1, si, ci), (4)

where si is an RNN hidden state for time i, computed by

si = f(si�1, yi�1, ci).

It should be noted that unlike the existing encoder–decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ci for each target word yi.

The context vector ci depends on a sequence of annotations
(h1, · · · , hTx

) to which an encoder maps the input sentence. Each
annotation hi contains information about the whole input sequence
with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.

The context vector ci is, then, computed as a weighted sum of these
annotations hi:

ci =

TxX

j=1

↵ijhj . (5)

The weight ↵ij of each annotation hj is computed by

↵ij =
exp (eij)PTx

k=1 exp (eik)
, (6)

where
eij = a(si�1, hj)

is an alignment model which scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden state si�1 (just before emitting yi, Eq. (4)) and the
j-th annotation hj of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the other components of the proposed system. Note that unlike in traditional machine translation,

3

αt = softmax([score(st−1,h1), . . . , score(st−1,hT )]
⊤)

score(s,h) = v⊤ tanh (W [s;h])

c = α⊤
t H where H = [h1, h2, . . . , hT ]

T

commonly known as “Additive Attention”, even though it is
based on concatenation!

Bahdanau, D., Cho, K. and Bengio, Y., 2014. Neural machine translation by jointly
learning to align and translate. ICLR 2015.

Jonathon Hare Attention 8 / 14

https://link.springer.com/chapter/10.1007/978-3-319-73531-3_10


Hard Attention vs Soft-attention

Soft-attention: use the softmax to smoothly attend mostly to one
thing (but capture a bit of everything else)

Hard attention: you specifically only attend to one thing: tricks (e.g.
policy gradients or ST operator) from last lecture required to learn

Jonathon Hare Attention 9 / 14

Aside: Relaxation of a map/hashtable/dictionary

Jonathon Hare Attention 10 / 14



Scaled dot-product attention

Attention(Q,K ,V ) = softmax(
QK⊤
√
dk

)V

In the previous Seq2Seq example we could replace additive attention
with scaled dot-product attention with something like Q = f (st−1),
K = g(H) and V = j(H).

The scaling 1/
√
dk is just to improve learning (larger dk implies larger

dot products, which pushes further towards the flatter bit of the
softmax, and thus smaller gradients.)

Jonathon Hare Attention 11 / 14

Scaled dot-product self-attention

SelfAttention(X ) = softmax(
QK⊤
√
dk

)V

Q = WqX

K = WkX

V = WvX

Jonathon Hare Attention 12 / 14



Multi-head Attention

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p

dk, and apply a softmax function to obtain the weights on the
values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q, K, V ) = softmax(
QKT

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

MultiHead(Q,K ,V ) = [head1; . . . ; headn]WO

headi = Attention(QWQ
i ,KWK

i ,VW V
i )

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30.

Jonathon Hare Attention 13 / 14

The Transformer

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

Jonathon Hare Attention 14 / 14


