
Convolutional Neural 
Networks

Jonathon Hare 
  

Vision, Learning and Control 
University of Southampton  

Many pictures used here are from https://github.com/vdumoulin/conv_arithmetic

a little history of 
VISION



1958
Rosenblatt’s Perceptron

Frank Rosenblatt



1959
Receptive Fields of Single Neurons in the Cat’s Striate Cortex

David
Hubel

Torsten
Wiesel



1970
Is vision innate or acquired?

•

Colin Blakemore

1979
Neocognitron

Kunihiko Fukushima



1998
LeNet-5: Convolutional Neural Networks

Yann LeCun

Important Concept 1: 
Receptive Fields

• Parts of the visual system consist spatially local 
connections being fed into the neurons 

• In such a scenario, we can think about the 
Receptive Field (RF) of a neuron



Important Concept 2: 
Equivariance

• A function f(x) is equivariant to a function g if  
f(g(x)) = g(f(x)) 

• If the input changes, the output changes the 
same way

Important Concept 3: 
Translational Equivariance

• Consider what would happen if you had grids of neurons 
with their own receptive fields, but with shared weights. 

• Each neuron would respond in the same way to a 
given stimulus within its RF 

• If an input stimulus were moved over the grid, then the 
outputs of the neurons would move in the same way 

• This is translational equivariance and this is the 
key property of a ‘Convolutional Layer’ in a network



Signal Processing:
Convolution and Cross-Correlation

• Convolution is an element-wise multiplication in the 
Fourier domain (c.f. Convolution Theorem) 

• fѰg = ifft(fft(f) . fft(g)) 

• Whilst f and g might only contain real numbers, 
the FFTs are complex (real + imagj) 

• Need to do complex multiplication!

Template Convolution
• In the time domain, convolution is:  

• Notice that the image or kernel is “flipped” in time

• Also notice that the is no normalisation or similar



Template Convolution

What if you don’t flip the 
kernel?

• Obviously if the kernel is symmetric there is no difference 

• However, you’re actually not computing convolution, but 
another operation called cross-correlation 

• * represents the complex conjugate 

• (you can compute this with the multiplication of the FFTs 
just like convolution: iFFT(FFT(f)* . FFT(g)) 



“Convolution” in Neural Networks
• Important Concept 4: “Convolution” in the neural network 

literature almost always refers to an operation akin cross-
correlation

• An element-wise multiplication of learned weights across a 
receptive field, which is repeated at various positions across 
the input. 

• Normally, we also add an additional bias term  

• Most often a single one (for each kernel), but could be one 
for each spatial position. 

• There are also other parameters of these “convolutions”…

Convolutional Layers

• In a convolutional layer, we have multiple kernels or 
filters which are learnt (plus the biases) 

• Each filter produces a single “Response Map” or 
“Feature Map” which are stacked together as 
“channels” of the resultant output tensor



Efficient Computation of 
Convolutions

• Classical theory would suggest that the most efficient way 
to compute convolution (or cross-correlation) is via the 
Fourier transform if the kernels are larger 

• Or via direct spatial-domain implementation for small 
kernels 

• In neural networks we need to be able to compute many 
convolutions on a single input as quickly as possible 

• We have specialised multi-core hardware and efficient 
GEneral Matrix Multiply (GEMM) in BLAS to help 
though…

Convolution as a Matrix 
Multiplication

• The convolution operation can be expressed as a matrix 
multiplication if either the kernel or the signal is 
manipulated into a form known as a Toeplitz matrix: 

• For 2D convolution one would use a “doubly block 
circulant matrix” 

• Important Concept 5: convolution is a linear operator

y = h * x =

h1 0 … 0 0
h2 h1 … ⋮ ⋮
h3 h2 … 0 0
⋮ h3 … h1 0

hm−1 ⋮ … h2 h1
hm hm−1 ⋮ ⋮ h2
0 hm … hm−2 ⋮
0 0 … hm−1 hm−2
⋮ ⋮ ⋮ hm hm−1
0 0 0 … hm

x1
x2
x3
⋮
xn



N-d Tensor Convolution

• In neural networks we want to expand our use of 
convolutions to work with tensors of any number of 
dimensions 

• If the input is say C x H x W, where C is the 
“channels” dimension and H & W are the spatial 
dimensions, we would define a convolutional 
kernel of size C x K x L

N-d Tensor Convolution
• We also don’t typically want a single kernel, but 

rather many 

• Each one acting as a feature detector producing 
a feature map 

• We can just add another dimension to the kernel 
tensor to incorporate convolution with all kernels 
in one operation:

Zi,j,k = ∑
l,m,n

Vl,j+m−1,k+n−1Ki,l,m,n



input

Kernel/ 
weights

2x5x5

3x2x3x3

3x3x3Feature maps

Biases 3

Data Types
• Convolutions are applied to many dimensionalities 

and types of data - for example:

Single Channel Multichannel

1-D Audio Multiple sensor data over 
time

2-D Audio data preprocessed into a 
spectrogram; greyscale images

Colour image data (e.g. 
RGB)

3-D Volumetric data, e.g. CT scans Colour video data



Convolutional Layer 
Parameters

• The core parameters of a convolution are: 

• The dimensionality (is it 1-D, 2-D, 3-D in the 
spatial sense?) 

• The spatial extent of the kernel(s) 

• The number of kernels (or output channels)

2d convolutions, kernel 
size=(1,1)

• 1x1 convolutions are a common place operation, 
but might seem non-sensical at first  

• They do not capture any local spatial information 

• They are used to change the number of channels 
without affecting the spatial resolution



Padding
• What happens to a convolution at the edges of its 

spatial extent? 

• In signal processing, using the Fourier transform 
the “image” wraps around, so the output is the 
same size as the input 

• In spatial convolution if we do nothing, the output 
will be smaller… 

• So, we often use zero-padding to retain the size

No padding

Arbitrary padding

“same” padding



Striding
• Convolution is expensive… could we make it 

cheaper by skipping over positions?

Stride=(2,2)

Fractional Striding/
Transpose Convolution

• What if we consider fractional strides between 0 
and 1?  

• Intuitively, if bigger strides subsample, then 
fractional strides should upsample 

• This is equivalent to “expanding” the input by 
padding and performing convolution 

• And potentially also striding by adding zeros 
around all the values



Transpose convolution, stride=1

No padding Arbitrary padding

Transpose convolution, stride=2

No padding Padding



• You’ll often find fractionally stride convolutions described 
as “transposed convolutions” 

• That’s because they can be implemented by transposing 
the kernel’s Toeplitz matrix before the multiply 

• Some old literature also refers to this as “deconvolution” 

• Please don’t do that!! 

• Also note that this might not be the best way of upsampling 
(see https://distill.pub/2016/deconv-checkerboard/)

Pooling

• Striding is a popular way to reduce spatial 
dimensionality in modern networks 

• before striding was devised, pooling, was the 
defacto way of reducing dimensionality



Max Pooling, 2x2, stride=2

Max Pooling Gradients

• The gradient of the max pooling operation is 1 
everywhere a max value was selected, and zero 
elsewhere 

• This means that implementations not only need 
to record the max values in the forward-pass, but 
also keep track of the positions of those 
maximums for the backward pass



Average Pooling

Local Versus Global Pooling
• The pooling operations on the previous slides are local 

• They result in a feature map reducing in spatial size 

• Global pooling reduces a feature map to a scalar 

• So a tensor of many feature maps would be reduced 
to a single feature vector 

• Often used near the end of networks to flatten 
feature maps into feature vectors that can be fed 
into an MLP



Dilated Convolutions
• Sometimes we want to have larger receptive 

fields in our networks 

• We can increase the kernel size to achieve 
this, but this introduces more weights 

• We can downsample/pool the input, but 
this decreases spatial resolution  

• Or we could ‘pad’ the kernel with zeros 
throughout to increase the effective size 
without increasing the number of 
parameters


