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To my learners and deep-learners.
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OK, Deep Learning has outlived its usefulness as a buzz-phrase. Deep Learn-

ing est mort. Vive Differentiable Programming!

Yeah, Differentiable Programming is little more than a rebranding of the

modern collection of Deep Learning techniques, the same way Deep Learning

was a rebranding of the modern incarnations of neural nets with more than

two layers. But the important point is that people are now building a new

kind of software by assembling networks of parameterized functional blocks

and by training them from examples using some form of gradient-based opti-

mization.

An increasingly large number of people are defining the networks procedu-

rally in a data-dependent way (with loops and conditionals), allowing them

to change dynamically as a function of the input data fed to them. It’s really

very much like a regular program, except it’s parameterized, automatically

differentiated, and trainable/optimizable. Dynamic networks have become

increasingly popular (particularly for NLP), thanks to deep learning frame-

works that can handle them…

Important note: this won’t be sufficient to take us to “true” AI. Other concepts

will be needed for that, such as what I used to call predictive learning and

now decided to call Imputative Learning. More on this later…

Yann LeCun, January 2018
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Preface

“Why another book about deep learning?” my colleague asked. It’s a good question... Current
textbooks focus on thewhat and how of deep learning rather than thewhy. There are numerous
books that will tell you about how you can use a convolutional network to solve an image
classification problem, and how you can add residual blocks to improve the performance, but
few go into the true rationale for the use of convolutions or skip connections. At the same time
deep learning research is moving fast and models are moving away from straight forward
use of simple stacks of linear, convolutional and recurrent layers towards far more dynamic
differentiable programs. These new programs necessarily incorporate many structural &
innate priors and inductive biases to help the model learn and leverage the data in particular
ways (to for example achieve disentanglement).

There is room for debate about how much a model should learn versus to what extent a
model should be engineered, however, at the same time all of the building blocks we currently
use have some form of inherent bias or innate prior within them. These biases and priors are
prevalent throughout the learning machinery, from biases in the data, to biases in the model
to inherent biases in the learning algorithm. My motivation when writing these words was
to exactly try and address these issues by describing not only how particular models work,
but when and why you might make particular design choices, and what the implication of
those choices might be.

My target audience was advanced undergraduates and postgraduates, who have already
studied basic machine learning, and understand the basic ideas of classification and re-
gression. Whilst the early parts of the book provide something of a refresher in this area
the scope is necessarily limited, and my aim was not to compete with the classic machine
learning textbooks by Chris Bishop or David Mackay for example. I have strived to highlight
right from the beginning how it is possible to construct learning machines that perform
tasks that do not necessarily immediately fall into those covered by the realm of classical
machine learning and statistical learning, as well as how our new machines need not be static
functional mappings, but can incorporate their own dynamics.

The underlyingmathematics of deep learningmodels andmore general differentiable pro-
grams, and the approaches to optimising them, is a common theme of this book. The reader
is advised that there is a lot of mathematics involved, however I have strived throughout to
try to give the intuitive explanations of what that mathematics means or tells us. Calculus,
particularly differentiation, clearly plays a big role throughout the text, and I have endeavored
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to give this an in-depth coverage, including looking at the inner details of how the three main
approaches to computing derivatives and gradients (numeric, symbolic and automatic),
as well as stochastic gradient estimators, play a role in the wider world of differentiable
programming.

The overall contents of this book came about frommy lectures and notes from the Differen-
tiable Programming and Deep Learning module I teach toMasters students. To a great extent,
the chapters follow along with the order in which I lecture, however they of course go into far
greater depth than is possible in a forty-five minute talk. In terms of structure, I’ve broken the
topics into three parts; the first is all about the foundational building blocks of differentiable
programming, and focuses on the underlying mathematics, algorithmic and computational
techniques. The second part looks at contemporary deep learning architectures with a view
to understanding why they are structured as they are. The third part looks at more advanced
topics where structural biases play a key role in the building blocks of models, and looks to
the future where such features will play a critical role in the next generation of learning AIs
towards neuro-symbolic agents.
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Nomenclature

Numbers and Arrays (scalars, vectors, matrices and tensors)

𝑎 A scalar (real or integer).

𝒂 A vector.

𝑨 A matrix.

𝗔 A tensor.

𝑰 Identity matrix.

𝑰𝑛 𝑛 × 𝑛 identity matrix.

𝒆𝑖 Standard basis vector [0,… , 1,… , 0] with the 1 at the 𝑖-th position and zeros
everywhere else.

a Scalar random variable.

a Vector-valued random variable.

A Matrix-valued random variable.

𝟎 Vector, matrix or tensor of zeros (depending on context).

𝟏 Vector, matrix or tensor of ones (depending on context).

𝑎 + 𝑏𝑖 Complex number made up of the tuple (𝑎, 𝑏)with real part 𝑎 and imaginary
part 𝑏 following the rule (𝑎, 𝑏) ⋅ (𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐). The imaginary
unit 𝑖 is defined as 𝑖2 = −1.

𝑎 + 𝑏𝜖 Dual number made up of the tuple (𝑎, 𝑏) and following the rule (𝑎, 𝑏) ⋅
(𝑐, 𝑑) = (𝑎𝑐, 𝑎𝑑 + 𝑏𝑐). The symbol 𝜖 is taken to be an infinitesimally small,
but non-zero, value that satisfies 𝜖2 = 0.

Indexing

𝑎𝑖 Element 𝑖 of vector 𝒂, with indexing starting at 1.
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𝐴𝑖,𝑗 Element 𝑖, 𝑗 of matrix 𝑨.

𝑨𝑖,∶ Row 𝑖 of matrix 𝑨.

𝑨∶,𝑖 Column 𝑖 of matrix 𝑨.

𝘈𝑖,𝑗,𝑘 Element (𝑖, 𝑗, 𝑘) of a 3-D tensor 𝗔.

𝗔∶,∶,𝑖 2-D slice of a 3-D tensor.

a𝑖 Element 𝑖 of the random vector a.

Sets, ranges, intervals and tuples

𝔸 A set.

ℝ The set of all real numbers.

ℤ The set of all integer numbers.

ℂ The set of all complex numbers.

𝔻 The set of all dual numbers.

{0, 1} The set containing 0 and 1.

{0,… , 𝑛} The set of all integers between 0 and 𝑛 inclusive.

[𝑎, 𝑏] The closed real interval between 𝑎 and 𝑏 inclusive.

[𝑎, 𝑏) The half-open real interval between 𝑎 inclusive and 𝑏 exclusive.

(𝑎1,… , 𝑎𝑛) The tuple or ordered sequence of elements 𝑎𝑖 to 𝑎𝑛. Equivalent to the column
vector [𝑎1 𝑎2 … 𝑎𝑛]

⊤

Functions

𝑓 ∶ 𝔸 → 𝔹 The function 𝑓 with domain 𝔸 and range 𝔹. 𝑓 maps an input taken from
the set 𝔸 to a element from the set 𝔹.

𝑓 (… ) def= … Function 𝑓 (… ) is defined to be equal to …

𝑓 (𝒙; 𝜽) or 𝑓𝜽(𝒙) A function of 𝒙 parameterised by 𝜽. Sometimes we will write 𝑓 (𝒙), omitting
𝜽 to lighten notation.

𝑓 ∘ 𝑔 Binary function composition of 𝑓 and 𝑔. Equivalent to writing 𝑓 (𝑔(… )).

log(𝑥) Natural logarithm of 𝑥.

ReLU(𝑥) Rectified Linear Unit activation, max(𝑥, 0).
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logistic(𝑥) The logistic function,
1

1 + exp(−𝑥) . Sometimes referred to as the sigmoid

function.

softplus(𝑥) Softplus, log(1 + exp(𝑥)).

‖𝒙‖𝑝 ℓ𝑝 norm of 𝒙.

‖𝒙‖ or ‖𝒙‖2 ℓ2 norm of 𝒙.

[𝒙; 𝒚] Concatenation of two vectors into a larger vector; can be extended to more
than two vectors, e.g. [𝒙; 𝒚; 𝒛].

Linear Algebraic Operations

𝑨⊤ Transpose of 𝑨.

𝑨∗ Conjugate (or Hermitian) transpose of 𝑨. If 𝑨 is real, then 𝑨∗ = 𝑨⊤.

𝑨−1 Inverse of 𝑨.

𝑨+ Moore-Penrose inverse (pseudoinverse) of 𝑨.

𝑨⊙ 𝑩 Hadamard product. Element-wise product of 𝑨 and 𝑩.

det(𝑨) Determinant of 𝑨.

Calculus

d𝑓 (𝑥)
d𝑥 Leibniz’s notation for the first derivative of 𝑓 (𝑥) with respect to 𝑥.

d2𝑓 (𝑥)
d𝑥2 Leibniz’s notation for the second derivative of 𝑓 (𝑥) with respect to 𝑥.

𝑓 ′ Langrange’s notation for the first derivative of 𝑓. If 𝑓 is a function of a
single variable, then 𝑓 ′ is the derivative with respect to that variable and 𝑓 ″

represents the second derivative.

𝜕𝑦
𝜕𝑥 Partial derivative of 𝑦 with respect to 𝑥.

∇𝒙𝑦 Gradient (vector) of 𝑦 with respect to 𝒙.

∇𝑿𝑦 Matrix containing derivatives of 𝑦 with respect to 𝑿.

∇𝗫𝑦 Tensor containing derivatives of 𝑦 with respect to 𝗫.

𝜕𝑓
𝜕𝒙 Jacobian matrix 𝑱 ∈ ℝ𝑚×𝑛 of 𝑓 ∶ ℝ𝑛 → ℝ𝑚.

∇2
𝒙 𝑓 (𝒙) The Hessian matrix of 𝑓 at input point 𝒙.
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Datasets and Distributions

𝑝data The data generating distribution

̂𝑝data The empirical distribution defined by the training set

𝕏 A set of training examples

𝒙(𝑖) The 𝑖-th example (input) from a dataset

𝑦(𝑖) or 𝒚(𝑖) The target associated with 𝒙(𝑖) for supervised learning

𝑿 The 𝑚 × 𝑛 matrix with input example 𝒙(𝑖) in row 𝑿𝑖,∶
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Standard Formulae

𝑓 (𝑥) =
∞
∑
𝑛=0

𝑓 (𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛

The Taylor series of 𝑓 at input point 𝑥. 𝑓 (𝑛) denotes the 𝑛-th
derivative with 𝑓 (0) defined as 𝑓, and both 0! and (𝑥 − 𝑎)0 are
defined as being 1.
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1 A convolutional neural
network is a neural network
built of convolutional layers
which have a number of
interesting properties as we
will see in chapter 11.

1. Introduction

In recent years the fields of machine learning, computer vision,
natural language processing, and others, have been completely
changed by the deep learning revolution. This revolution was
kick-started in 2012when aConvolutionalNeuralNetwork1 known
as AlexNet demonstrated amassive improvement in performance
over contemporary techniques in a problem of image classifica-
tion. Since AlexNet, all sorts of problems have been tackled with
deep learning and representation learning. So why then did
Yann LeCun pronounce the death of deep learning in 2018, and
propose that we should instead be talking about Differentiable
Programming instead?

The point Yann was trying to make is that we can now do
more than just build traditional neural networks and learning
machines... We can build complex software systems from differ-
entiable functional blocks (which may or may not have learnable
parameters) and assemble these into complex software systems
that can be “trained” using gradient-based optimisation. As with
traditional procedural programming, constructs such as loops
and conditionals can be used inside differentiable programs to
enable them to behave in a data dependent way, and change
dynamically as a function of their input.

So, we now have differentiable programming instead of deep
learning, and it allows us to do more, or perhaps be more flexible
with the models/software that we create, but this then poses
another interesting question: how do we compose the building
blocks of our software to achieve the goal we have in mind?
This is where we need to start thinking about the structure we
want to impose in our software or learning machines through
innate priors and inductive biases. These are not new concepts;
Yann’s original convolutional neural network design used the
innate prior of the convolution operation (or more correctly cross-
correlation in most modern implementations) to directly impose
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2 Equivariance and invari-
ance are properties of cer-
tain mathematical functions.
A function that is invariant
to a certain class of transfor-
mation produces the same
output when given an input
as it does to a transformed
version of that same input.
Equivariance is a property
of functions that means that
if the input is transformed,
then the output is also trans-
formed in the same way. We
will define these properties
more formally in ??.

3 The d
d𝑥 notation is called

Leibniz’s notation; there
are several other notations
including Lagrange’s or
‘prime’, Newton’s and Eu-
ler’s.

4 A function of one variable.

i
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d𝑦

d𝑥

Figure 1.1: Computing the
gradient of a straight line.
5 This is Langrange’s nota-
tion; 𝑓 ′(𝑥) ≡ d

d𝑥 𝑓 (𝑥).

translational equivariance2 onto part of a model and a pooling
operation to achieve a degree of translational invariance. This
network was designed to recognise hand written characters in
images, so it was a desirable property that the network would be
invariant to the exact position of the character in the image.

This introduction aims to show how all the building blocks
of differentiable programming fit together without going into
too much detail. Much of the content will be a refresher of pre-
University topics such as basic calculus. You will probably en-
counter some ideas that you have not seen or thought of before
too however. Almost all of the things we highlight in this intro-
duction are covered in much greater detail at later points in the
book, and the author has endeavored to provide cross-references
to help you find the corresponding detailed discussion.

1.1. Differentiation

You probably originally studied calculus before University. How
much can you remember beyond sets of formulas3 like d

d𝑥𝑥
𝑛 =

𝑛𝑥𝑛−1 or d
d𝑥 sin(𝑥) = cos(𝑥)? We will start by refreshing your

memory of what a derivative of a function is, how it can be com-
puted and how it can actually be used to solve a practical problem.

1.1.1. Recap: what is the derivative of a univariate4
function?

Firstly, recall that the slope or gradient of a straight line is d𝑦
d𝑥 ; that

is it is the ratio of the change in the y-direction to the change in
the x-direction. This is illustrated in fig. 1.1. Because the line is
straight, you can pick any point that is not on the line and measure
the horizontal and vertical distances d𝑥 and d𝑦 to the line, and
the computed gradient will be the same.

For an arbitrary real-valued univariate function, 𝑓 (𝑎), we can
approximate the derivative5 𝑓 ′(𝑎) using the gradient of the secant
line defined by a point (𝑎, 𝑓 (𝑎)) and a point (𝑎+ℎ, 𝑓 (𝑎+ℎ)) a small
distance ℎ away from 𝑎, as illustrated in fig. 1.3. The gradient of
this secant line is

𝑓 ′(𝑎) ≈
𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)

ℎ . (1.1)

This expression is sometimes known as Fermat’s Difference Quo-
tient or Newton’s Quotient. As ℎ becomes smaller, the approxi-

2
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𝑓 (𝑎)

𝑓 (𝑎 + ℎ)

(a) 𝑦 = 𝑥

𝑓 (𝑎)

𝑓 (𝑎 + ℎ)

(b) 𝑦 = 𝑥

𝑓 (𝑎)

𝑓 (𝑎 + ℎ)

(c) 𝑦 = 𝑥
Figure 1.2: Approximating the gradient of a curve 𝑓 at 𝑎 using the secant line between (𝑎, 𝑓 (𝑎)) and (𝑎 + ℎ, 𝑓 (𝑎 + ℎ)).
As ℎ decreases in the limit towards zero (figures (a)-(c)) the approximation becomes more accurate and the secant
line approaches the instantaneous tangent to the curve at 𝑎.

mated derivative becomes more accurate. If we take the limit as
ℎ tends to 0 (written as ℎ → 0), then we have an exact expression
for the derivative,

d𝑓
d𝑎 ≡ 𝑓 ′(𝑎) = lim

ℎ→0

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)
ℎ . (1.2)

This derivative represents the slope of the instantaneous tangent
to the curve 𝑓 at 𝑎.

1.1.2. The derivative of simple expressions from first
principles

The expression for the derivative in eq. (1.2) gives us the basis
for computing the derivative of any arbitrary expression. For
example, we can compute the derivative of 𝑦 = 𝑥2 as follows,

d𝑦
d𝑥 = lim

ℎ→0

(𝑥 + ℎ)2 − 𝑥2

ℎ

= lim
ℎ→0

𝑥2 + ℎ2 + 2ℎ𝑥 − 𝑥2

ℎ

= lim
ℎ→0

ℎ2 + 2ℎ𝑥
ℎ

= lim
ℎ→0

(ℎ + 2𝑥)

= 2𝑥 .

Going back to those formulas that you might remember from
when you first encountered differentiation, we can prove that

3
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6 With a few extra tricks
involving implicit differenti-
ation and the derivatives of
logarithms one can prove the
same holds for any real 𝑛.

7 See exercise 1.1 to prove
this for yourself.

d
d𝑥𝑥

𝑛 = 𝑛𝑥𝑛−1 for positive integer 𝑛 by applying the same reason-
ing to 𝑦 = 𝑥𝑛 and exploiting the binomial theorem6:

.
d𝑦
d𝑥 = lim

ℎ→0

(𝑥 + ℎ)𝑛 − 𝑥𝑛

ℎ

= lim
ℎ→0

𝑥𝑛 + 𝑛𝑥𝑛−1ℎ +⋯+ ℎ𝑛 − 𝑥𝑛

ℎ

= lim
ℎ→0

𝑛𝑥𝑛−1ℎ + 𝒪(ℎ2)
ℎ

= lim
ℎ→0

𝑛𝑥𝑛−1 +𝒪(ℎ)

= 𝑛𝑥𝑛−1

Similarly, we can prove that d
d𝑥 sin(𝑥) = cos(𝑥) by utilising the

trigonometric identity

sin𝐴− sin𝐵 = 2 cos
(𝐴 + 𝐵)

2 sin
(𝐴 − 𝐵)

2

and noting7 that lim𝑥→0
sin𝑥

𝑥 = 1. Taking 𝑦 = sin 𝑥 and starting
as before with eq. (1.2),

.
d𝑦
d𝑥 = lim

ℎ→0

sin(𝑥 + ℎ) − sin 𝑥
ℎ

= lim
ℎ→0

2
ℎ cos(

𝑥 + ℎ + 𝑥
2 ) sin(

𝑥 − ℎ + 𝑥
2 )

= lim
ℎ→0

2
ℎ cos(

2𝑥 + ℎ
2 ) sin(

ℎ
2)

= lim
ℎ→0

cos(
2𝑥 + ℎ

2 ) ⋅ lim
ℎ→0

2
ℎ sin(

ℎ
2)

= lim
ℎ→0

cos(
2𝑥 + ℎ

2 ) ⋅ lim
ℎ
2 →0

sin(
ℎ
2)/

ℎ
2

= lim
ℎ→0

cos(
2𝑥 + ℎ

2 )

= cos 𝑥

1.1.3. Intuition: What does the derivative d𝑦/d𝑥 tell
us

If your math teachers were like mine, then you were probably
taught to think about the derivative of a function as being a
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8 We will encounter many of
these throughout this book,
but you might already know
some of the broad ideas of
empirical risk and notions of
objective ‘loss’ functions like
the mean squared error loss.

rate of change of that function. This is an excellent intuition for
thinking about how for example how to relate position, velocity
(the rate of change of position) and acceleration (the rate of change of
velocity). This couldwell have been one of the first motivations for
you using differentiation when your were first learning calculus.
Formalising, let 𝒓(𝑡) be some function that describes the position
of an object at time some time 𝑡. Then, the instantaneous velocity
𝒗(𝑡) of that object at time 𝑡 is given by

𝒗(𝑡) =
d𝒓(𝑡)
d𝑡 .

The acceleration, 𝒂(𝑡), is given by the derivative of velocity with
respect to time, or the second derivative of position with respect to
time,

𝒂(𝑡) =
d𝒗(𝑡)
d𝑡 =

d2𝒓(𝑡)
d𝑡2

.

Higher order derivatives are of course possible; for example jerk
𝒋(𝑡) is given by the third derivative of position

𝒋(𝑡) =
d𝒂(𝑡)
d𝑡 =

d2𝒗(𝑡)
d𝑡2

=
d3𝒓(𝑡)
d𝑡3

.

The reverse viewpoint. This rate of change perspective of what a
derivative tells us is eminently useful for many problems. How-
ever, there is another way of thinking about what the derivative
tells us which fits better with how we will use derivatives in dif-
ferentiable programs and learning machines. In this alternative
viewpoint we can think of the derivative d𝑦/d𝑥 as telling us by
how much the 𝑦 changes if we make a small change to the 𝑥.

To put this more into context, lets consider a supervised
learning problem where we have a dataset 𝕏 of 𝑁 data pairs
𝕏 = {𝒙, 𝒚}𝑁

𝑛=1, and our objective is to learn some parameterised
function 𝑓 that makes a prediction ̂𝒚 given 𝒙. We can write this as

̂𝒚 = 𝑓 (𝒙; 𝜃) ,

where 𝜃 represents the parameter that controls how the predic-
tions are made. Our learning problem is to find the value of 𝜃 that
would minimise some error function ℰ(𝕏, 𝑓 ) which is computed
between all the 𝒚’s in the dataset and the predictions ̂𝒚 for the
corresponding 𝒙’s. This error function could take many different
forms8 later, however at this stage it should be obvious that ℰ
depends on 𝑓 and is thus dependent on the value of 𝜃. Going
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9 If these equations don’t
look familiar don’t worry.
The first just says that the
javelin moves at a constant
velocity horizontally in the
absence of any air resistance
(Newton’s first law), and
the second one says there is
a continual vertical down-
ward acceleration acting on
the javelin due to the force
of gravity (Newton’s second
law).

back to this reverse viewpoint of differentiation, we can think
of the derivative dℰ/d𝜃 as telling us how much (and in which
direction) the error will change if we make a small change in the
value of 𝜃. Not only can this tell us which direction we should
adjust 𝜃 to reduce the error, but it also tells us about the sensitivity
of the error to changes in 𝜃.

1.1.4. Solving a simple problem with differentiation

Now we have an intuition for what the derivative means, lets
turn our attention to solving a real-world problem by using dif-
ferentiation. We will first solve this problem analytically because
it is simple enough to have a closed form solution (indeed you
might actually remember the answer from having attempted a
similar question in the past). Wewill thenwork through the steps
required to derive an algorithm that can numerically compute the
solution, and implement that algorithm as a computer program.

We’re going to ask at what angle should a javelin be thrown to
maximise the distance travelled? We will assume that the initial
speed is 𝑢ms−1 and that gravity acts with an acceleration 𝑔ms−2

towards the Earth. To simplify ourmodelwewill choose to ignore
the launch height as it will be negligible compared to distance
travelled, and also ignore the effect of any air resistance. With
these assumptions in place, the kinematics equations that define
the motion9 of the javelin are

𝑥 = 𝑢𝑡 cos(𝜃)
𝑦 = 𝑢𝑡 sin(𝜃) − 0.5𝑔𝑡2 ,

where the position of the javelin at time 𝑡 is given by (𝑥, 𝑦). Now,
clearly the javelin hits ground when 𝑦 = 0 and we only care about
𝑡 > 0, so,

0 = 𝑢𝑡 sin(𝜃) −
𝑔
2𝑡

2

⟹ 𝑡 =
2𝑢
𝑔 sin(𝜃) .

Substituting this into the horizontal component and noting that
2 sin(𝜃) cos(𝜃) = sin(2𝜃) then gives

𝑥 = 𝑢
2𝑢
𝑔 sin(𝜃) cos(𝜃)

=
𝑢2

𝑔 sin(2𝜃) .

6
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(c) saddle point
Figure 1.3: Illustrations of local minima, maxima and saddle points in one dimension. At all these points the
derivative of the sketched function is zero.

Now, we’re in a position to solve an optimisation problem which
we can write formally as

argmax
𝜃

𝑢2

𝑔 sin(2𝜃)

s.t. 0 ≤ 𝜃 ≤
𝜋
2 .

The argmax here tells us that we’re looking for the value of 𝜃
that maximises the distance, rather than the distance itself (for
which we would have written max). The constraint (s.t., ‘such
that’) on the above serves to limit the range of possible directions
in which the javelin is thrown to being from perfectly horizontal
(0 rad or 0°) to vertical (𝜋/2 rad or 90°). Now recall that the
stationary points (the minima, maxima and saddle points) of a func-
tion are points where the derivative of that function are zero. In
general a function might have any number of stationary points,
but differentiation can always be used to find them by computing
the derivative and setting the result to zero. Our function for 𝑥
above actually has an infinite number of minima and maxima (its
fundamentally just a sine-wave oscillating up and down), but no
saddle points, however in the domain 0 ≤ 𝜃 ≤ 𝜋

2 there is just one
maxima (which we can verify by looking at the sign of the second
derivative). Going back to the javelin problem, we thus need to

7
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10 For reasonable speeds
below the speed of sound
drag is equal to the square
of the speed multiplied
by the frontal-area of the
projectile multiplied by the
coefficient of drag. A javelin
has a relatively tiny frontal
area and low coefficient of
drag, so the effect is very
small.

11 In learning problems
its usually the convention
that we look to minimise a
loss function. In the javelin
example we maximised a
function, however maximi-
sation and minimisation
are trivially swapped by
negating the function. In
other words, maximising a
distance is the same as min-
imising a negative distance.
12 Deep networks often have
many millions of parameters
that need to be optimised.

compute the derivative with respect to 𝜃 and set it to zero:

0 =
d
d𝜃 (

𝑢2

𝑔 sin(2𝜃))

=
2𝑢2

𝑔 cos(2𝜃)

= cos(2𝜃)

Clearly 𝜃 = 𝜋
4 (2𝑛− 1) where 𝑛 ∈ ℤ, however for 𝜃 between 0 rad

and 𝜋
2 rad, 𝜃 = 𝜋

4 rad. This in turn implies that irrespective of the
initial velocity of the javelin, maximum distance is achieved when it is
launched at 45°.

As an aside, this is actually quiet an interesting result that ap-
plies to any object being thrown or fired: the maximal distance at
the same level is always achievedwhen the angle is 45°. Now in the
physical world some of the modelling assumptions, particularly
surrounding air resistance or drag10 does have some effect and
would reduce this angle. Our assumption that the launch height
did not matter does in fact also have a bigger effect as you can see
for yourself in exercise 1.2. Of course there are also additional
factors related to the physiology of the athlete and environmental
factors such as the wind that also have an effect and mean that
the typical angle is somewhere around 32 ° to 36 °.

1.1.5. Abstraction: Solving problems by minimising
an objective

Before we look at constructing an algorithm and software imple-
mentation for solving our javelin problem, wewill first take a step
back and look at what we might abstract from howwe solved this
problem. To compute the parameter (the angle 𝜃) for the javelin
example we maximised a function representing the equation for
distance travelled. We can solve all kinds of problems using a
similar approach if we can (1) formulate an objective function
(often referred to as a loss or cost function), and (2) minimise11
the objective function with respect to the parameter(s).

This notion ofminimising a objective function to find solutions
is rather general and can be applied to many different types of
problem. However, there are several potential issues that we need
to consider:

1. The objective function might not be of a single parameter, but
rather have many12 parameters that need to be adjusted to

8
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13 We look more formally
at these restrictions in ??
where we consider the need
for functions to be continu-
ous and differentiable almost
everywhere to behave well
within our computational
machinery, and look at the
notions of relaxations that
can allow approximations
to functions that don’t have
these properties to be made.

minimise the function. In such a case we can use the partial
derivatives of the objective with respect to each parameter.
To find a minima (there might be more than one) we could
hypothetically solve the set of simultaneous equations that
results from setting all of these partial derivatives to zero,
although this might not be practical.

2. Clearly the objective function must be differentiable, or rather,
you must be able to either compute or estimate the partial
derivatives with respect to each of its parameters somehow.
This restricts the flexibility of our functions13.

3. It would in general be unreasonable to assume that in general
our objective functions would have only a single minima. In
reality they might have many local minima, often with the
same minima repeated under permutations of the function’s
parameters. For example it is easy to conceive of a function
such as 𝑓 (𝜃1, 𝜃2) = sin(𝜃1) sin(𝜃2) that has a local minima of
the same value under permutations of the ordering of the
parameters — that is 𝜃1 = −𝜋

2 , 𝜃2 = 𝜋
2 and 𝜃1 = 𝜋

2 , 𝜃2 = −𝜋
2

are both local minima with 𝑓 (−𝜋
2 , 𝜋

2 ) = 𝑓 (𝜋
2 , −𝜋

2 ) = −1).

4. In a function withmany local minima it might be computation-
ally intractable to find a globally optimal one (if one of more
such minima even exist). Further, this intractability might
mean that we might end up finding a saddle point rather than
a (local) minima.

5. The objective function itself could be arbitrarily complex (that
is up to you as creator of the function). In many cases it might
be difficult to analytically compute the derivatives, or analyti-
cally computing the partial derivatives might be intractable.

1.1.6. Gradient Decent: A simple algorithm for
minimising an objective function

The list of potential issues above highlights that in practice finding
a global minima might be hard, and that for complex objective
functions even writing down the analytic derivatives might be
practically impossible. If we are however happy to live with the
possibility that we might not find the best solution (or even an
actual local minima, or all the possible solutions) then we could
seek a numerical solution that find a set of parameters that have
(close to) zero derivatives. The advantages of this will be that we

9
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14 We will still need to be
able to compute or estimate
the local derivatives of the
function about a particular
set of parameters however.

do not need to derive a closed form solution for the derivatives of
the objective function14, or solve a set of simultaneous equations.

Formulating a simple algorithm to numerically find the pa-
rameters that locally minimise a objective turns out to be rather
intuitive, and has a simple physical world analogy. Imagine
that you are out walking and stood on the hillside of a smooth
quadratic valley as illustrated in ??. What is the fastest way to
the bottom? You simply walk down the hill in the most direct
way possible; after every step you take you can choose the next
step by evaluating the direction that will enable you to lose the
most height. Eventually you will either collapse of exhaustion,
or reach a point where any direction you can move in results in
you gaining height.

We can formalise this idea as a simple iterative optimisation
algorithm known as gradient descent. Given an scalar objective
function ℓ(𝜃) and an initial guess 𝜃0, at every step we update
the parameter(s) 𝜃 by an amount directly proportional to the
negative derivative15

15 We’re just considering a
single scalar parameter here
so we can just talk about the

derivative with respect to
that parameter. When we

deal with many parameters
(see ??), we will define the
algorithm in terms of the

vector of partial derivatives
of each parameter ∇𝜽ℓ(𝜽),

which is known as the
gradient (hence why the

algorithm is called “gradient
descent”).

,

𝜃𝑖+1 = 𝜃𝑖 − 𝛼
dℓ
d𝜃 (1.3)

where 𝛼 is the learning rate. With a suitable value of 𝛼 and with
a well-behaved function ℓ, eq. (1.3) will converge to either a local
minima or saddle point as illustrated in fig. 1.4. We can choose to
terminate the algorithm in a number of ways such as when the
gradient is close to zero (or equivalently there is little difference
between ℓ(𝜃𝑖+1) and ℓ(𝜃𝑖), e.g., |ℓ(𝜃𝑖+1 − ℓ(𝜃𝑖| < 𝜖). In machine
learning problems we often set a maximum number of iterations
(sometimes in combination with the gradient test on the training
loss, or analysis of the validation generalisation error which is the
magnitude of the difference between the training and validation
loss).

i
i

“genfigures/figures/graddescent.tikz” — 2022/4/4 — 16:51 — page 10 — #1 i
i

i
i

i
i

𝜃0

𝜃1

𝜃2

Figure 1.4: Gradient descent
iteratively finds the parame-
ter 𝜃 that minimises a func-
tion. 1.1.7. Javelin throwing again, but with Python code

Now we have a technique that will iteratively allow us to nu-
merically estimate the parameter(s) that minimise a function,
we construct a software implementation of the algorithm. We
will return back to our original javelin problem where we have
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already derived an expression for the derivative,

d
d𝜃 (

𝑢2

𝑔 sin(2𝜃)) =
2𝑢2

𝑔 cos(2𝜃) ,

and construct a python implementation as follows:
1 from math import sin, cos
2
3 theta = 0.1 # our initial guess, theta_0
4 gamma = 0.001 # learning rate
5 u = 28 # 28 m/s initial velocity
6 g = 9.8 # constant 9.8 m/s^2 acceleration towards the

ground
7
8 distance = u**2 * sin(2 * theta) / g
9 print(theta, distance)

10
11 for i in range(100):
12 dtheta = 2 * u**2 * cos(2 * theta) / g
13 theta = theta + gamma * dtheta
14
15 distance = u**2 * sin(2 * theta) / g
16 print(theta, distance)

If we run this code we will get the following output (truncated
here), which shows that the algorithm converges to an angle of
0.785 rad (which is 𝜋/4 rad or 45°), and a maximal distance of
80m:

1 0.1 15.893546463604896
2 0.25681065245459866 39.30676104058793
3 0.39616600450823336 56.95941704064276
4 0.5085159009993319 68.04406534735227
5 0.5926587597814116 74.12948048096732
6 0.6528192160171113 77.20409078000374
7 0.694749079686479 78.68883627904157
8 0.7235981382534541 79.389698659657
9 0.7433238318259351 79.71692719529094

10 0.756771734047573 79.86892021812099

…
100 0.7853981633974482 80.0
101 0.7853981633974482 80.0

Clearly in this case the solution we have found using the gradient
descent algorithm matches the one we computed analytically. So
what was the advantage of using gradient descent? In this partic-
ular case we still had to compute the derivative of the expression
analytically, but we did skip the part where we had to solve for
𝜃 when that derivative was set to zero. Clearly for this problem
that was not really much of a saving because the javelin problem
is actually rather simple; if we construct problems with more

11
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16 It is not just deep learning
problems that can benefit
from using gradient descent
to find the solutions. We
will introduce some high-
level examples at the end of
this chapter. In ?? we review
some other types of prob-
lem, which are otherwise
computationally infeasible,
that can be solved efficiently
with gradients.

17 For example the Taylor
series and Fourier series can
provide approximations of
functions.

18 Formally binary opera-
tions are functions of two
variables, or operands, where
the two domains and the
codomain are the same set
(so for example the addition
operation could be defined
for both inputs and the out-
put being from the set of
Real numbers).

complex functions with many parameters, then this technique of
using gradient descent really begins to show its power16.

1.1.8. Derivatives of more general functions

Function composition is the process of taking the output of one
function and applying another function to it. You will have seen
examples of this formalised in different ways in the past; for
example, if we had some input 𝑥, which we passed though a
function 𝑔 and passed the intermediate output though a function
𝑓 to get an output y, we could write this as

𝑦 = 𝑓 (𝑔(𝑥)) .

This is a function composition of 𝑓 applied to 𝑔. You might also
have seen this written as 𝑓 ∘ 𝑔, which you would read as “f of g”.
Of course more than two functions could be nested (for example
𝑓 ∘ 𝑔 ∘ ℎ), and indeed the depth of nesting could in principle be
in infinite. When we come to talk about deep learning, we will
see one of the reasons it is called “deep” is in reference to the
depth (or number of layers) of a neural network, which is exactly
equivalent to the depth of the function composition.

Almost all complex functions can be broken into simpler parts
either by construction (where a complex function is defined as a
composition of simple primitive functions), or by approximation
(for example through the low-order coefficients of a series17 or
through interpolation). The latter case of approximation can itself
often be viewed as a composition of functions. In both approxi-
mation and construction it is often the case that the individual
functions being composed have simple derivatives.

It is worth noting at this point that even elementary binary
arithmetic operations are functions and can be composed18. For
example, take the addition operator+; if we refer to the operands
as 𝑎 and 𝑏 respectively (i.e., in 𝑎 + 𝑏), then we can write

add(𝑎, 𝑏) def= 𝑎 + 𝑏 .

Now, if we consider the expression 𝑎 + 𝑏 + 𝑐, we can actually see
this is a function composition made by applying the add function
twice,

𝑎 + 𝑏 + 𝑐 ≡ add(add(𝑎, 𝑏), 𝑐) .
Although this is somewhat verbose, it does make the operation
order explicit and also it maps to how operations will be com-
puted by a machine. For example, in the right hand side of the
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19 The word tensor is some-
what overloaded. We’ll most
generally consider a tensor
to be a multidimensional
array of numbers. This is
discussed more in ??.

20 Don’t worry if you have
never studied complex num-
bers before; all you need to
know is that 𝑖 is a scalar con-
stant which can be treated
just like any other constant
value when we perform
algebraic manipulation or
differentiation here. The
value of 𝑖2 is −1, but that is
irrelevant for this proof.

expression
𝑎 + 𝑏 / 𝑐 ≡ add(𝑎,divide(𝑏, 𝑐)) ,

where divide(𝑎, 𝑏) def= 𝑎 / 𝑏, there is no doubt that the division
occurs before the addition. Returning to differentiation, recall
that derivatives of function compositions are given by applying
the chain rule,

ℎ′ = (𝑓 ∘ 𝑔)′ = (𝑓 ′ ∘ 𝑔) ⋅ 𝑔′ ,

which you might also remember being expressed as

d𝑦
d𝑥 =

d𝑦
d𝑢 ⋅

d𝑢
d𝑥 .

Derivatives of the elementary binary arithmetic operations are
given by the sum rule,

(𝑓 + 𝑔)′ = 𝑓 ′ + 𝑔′

and the product rule,

(𝑓 𝑔)′ = 𝑓 ′𝑔 + 𝑓 𝑔′ .

There are also the subtraction and quotient rules which follow
on from these.

In ?? we will see that these elementary rules of differentiation
can be extended to vector, matrix or tensor19 -valued multivari-
ate functions. Even with these extensions the simplicity of the
rules remains, and it will become evident that for broad classes
of function if you break it down into its constituent parts then
computing the derivatives becomes very easy.

As a fun example of how these rules and the notion of de-
composing a function into its constituent parts let us prove the
derivative of sin 𝑥 again. This time we will start by stating Eu-
ler’s formulas which relate trigonometric functions to complex
exponentials20,

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 ,
𝑒−𝑖𝑥 = cos(−𝑥) + 𝑖 sin(−𝑥) = cos 𝑥 − 𝑖 sin 𝑥 .

Now, by adding these formulas together we can solve for cos 𝑥,

𝑒𝑖𝑥 + 𝑒−𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 + cos 𝑥 − 𝑖 sin 𝑥
= 2 cos 𝑥

⟹ cos 𝑥 =
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2 ,
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and similarly by subtracting we can solve for sin 𝑥,

𝑒𝑖𝑥 − 𝑒−𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 − (cos 𝑥 − 𝑖 sin 𝑥)
= 2𝑖 sin 𝑥

⟹ sin 𝑥 =
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖 ,

So, the implication here is that sin 𝑥 can be broken down into the
weighted difference of two exponential functions. Recall that by
definition

d𝑒𝑥

d𝑥 = 𝑒𝑥

and
d𝑒𝑎𝑥

d𝑥 = 𝑎𝑒𝑎𝑥 .

Note that the latter is a trivial result of the chain rule,

d𝑒𝑢

d𝑥 =
d𝑒𝑢

d𝑢 ⋅
d𝑢
d𝑥 = 𝑒𝑢 ⋅

d𝑢
d𝑥 .

Now applying these exponential derivative formulations and
utilising the complex exponential form of cos 𝑥 we can prove the
derivative of sin 𝑥 is cos 𝑥

.

d
d𝑥 sin 𝑥 =

d
d𝑥 (

𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖 )

=
1
2𝑖 (

d
d𝑥𝑒

𝑖𝑥 −
d
d𝑥𝑒

−𝑖𝑥)

=
1
2𝑖 (𝑖𝑒

𝑖𝑥 − (−𝑖)𝑒−𝑖𝑥)

=
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2
= cos 𝑥

1.2. Back to programming

Modern computer programs are wonderfully complex things,
but computer programs are really just made up of function com-
positions and control statements. At the end of the day computer
programs are just compositions of really simple functions that
the microprocessor hardware can compute: arithmetic opera-
tions (add, multiply, divide, ...), logical operations (and, or, not,
comparisons...), operations that move data, etc.
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21 There are caveats around
the use of piecewise func-
tions in a differentiable
program optimised with gra-
dient descent. This includes
the need for the overall func-
tion to be continuous as
previously mentioned. This
example is continuous as
it transitions without any
discontinuity at 𝑎 = 0.5.

Many of these primitive operations performed by micropro-
cessors have well defined gradients with respect to their operands.
We’ve already seen that the chain rule tells us how to compute gra-
dients of composite functions, and it thus follows that it should
be possible to use this to compute gradients of certain types of
computer program. In principle this implies we can find the lo-
cally optimal parameters of a computer program designed to solve
a specific task by utilising the gradients of those parameters with
respect to some objective, together with an optimisation scheme
like the simple gradient descent approach we described earlier.

1.2.1. Differentiating through control logic and loops

It might not be immediately apparent how you might go about
computing the derivatives of a piece of code that contains control
statements or loops. Fortunately this actually turns out to be
relatively simple when you consider the duality between a piece
of code and its equivalent mathematical formulation. Take for
example the following snippet of python code on the left which
sets the value of a variable b as a function of another variable
a and the mathematical equivalent (and its derivative) on the
right:

Code

1 if a > 0.5:
2 b = 1
3 else:
4 b = 2 * a

Math

𝑏(𝑎) =
⎧{
⎨{⎩

0 if 𝑎 > 0.5
2𝑎 if 𝑎 ≤ 0.5

d𝑏
d𝑎 =

⎧{
⎨{⎩

1 if 𝑎 > 0.5
2 if 𝑎 ≤ 0.5

In this example the python code snippet was implicitly consid-
ered to be a function. The following codewith an explicit function
definition would clearly have the same mathematical equivalent
however.

1 function b(a):
2 if a > 0.5:
3 return 1
4 else:
5 return 2 * a

The mathematical form of this function (or rather the if-else state-
ment) is called a piecewise function, as it is made up of multiple
parts. The derivatives are computed by differentiating each part
separately21.
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22 Even the Gradient Decent
algorithm is itself differ-
entiable! We look at an
application of this in ??.

23 Distributed representa-
tions and embeddings are
discussed in detail in ??.

Similar to the if-else example above, we can also consider
what happens if a piece of code has a loop within it as in the
following:

Code

1 b = 1
2 for i in range(3):
3 b = b + b * a

Math

𝑏0 = 1
𝑏1 = 𝑏0 + 𝑏0𝑎

= 1 + 𝑎
𝑏2 = 𝑏1 + 𝑏1𝑎

= 1 + 2𝑎 + 𝑎2

𝑏3 = 𝑏2 + 𝑏2𝑎
= 1 + 3𝑎 + 3𝑎2 + 𝑎3

d𝑏
d𝑎 = 3 + 6𝑎 + 3𝑎2

As you can see in the math column, what we have done is to
explicitly unroll the for-loop over each iteration, and we maintain
the value of 𝑏 at each time-step by indexing 𝑏 with a subscript.

1.2.2. Can all programs be differentiable?

The examples in the previous section highlight how one can go
about differentiating bits of numeric software. Indeed, we can
differentiate through lots of types of programs and algorithms22,
but there are some significant limitations as not every operation
or function has useful gradients. In particular, many functions
have discontinuities or large areas of zero-gradient which makes
them unsuited for use in a gradient-based optimisation setting.
?? looks at how some of these problems can be circumvented
with different mathematical tricks.

What if we want to write programs that are not inherently
numerical — for example programs that consume or generate tex-
tual data? In such cases we will often look to ways in which that
data type can be encoded as numbers (most commonly as a vector
of numbers, that we might refer to as a distributed representation).
In some cases we might even use a (potentially differentiable)
program, often trained with self-supervised learning, to learn dis-
tributed representations called embeddings23.

Even without these tricks, it is possible to build differentiable
programs that solve a wide range real problems, such as imple-
mentations of neural networks that can be trained to recognise
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24 There are many chal-
lenges with this approach,
not least because computers
use fixed bit-width floating
point arithmetic which can
allow errors to accumulate.
We explore this more in ??.
25 Automatic differentia-
tion was a key ingredient
to enabling the deep learn-
ing revolution. It should
be noted that the other ap-
proaches to differentiation
still have their uses in deep
learning and broader differ-
entiable programming. For
example in ?? we will see
how symbolic differentiation
can be combined to increase
performance of particular
differentiable programs.

images or systems that attempt to understand or generate natural
language. All it takes for these examples is the careful construc-
tion of a program from differentiable building blocks, gradient
descent to optimise the parameters, and a differentiable objective
function coupled with large amounts of training data.

1.2.3. Do I really have to do the differentiation
manually?

At this point you might be wondering about the practicality of a
differentiable program. We’ve alluded to modern examples of
differentiable programs having many variables and being made
up of complex function compositions. Whilst we have demon-
strated that the chain rule lies at the heart of any approach to
differentiating complex compositions, at the end of the day all
the differentiation we have done so far has involved analytic and
algebraic manipulations performed by hand.

Thus far we have focused on analytically finding the gradi-
ent by taking a limit of the difference quotient. It turns out that
there are actually other ways of computing gradients which will
be useful in practical differentiable programs. Firstly the job
of computing gradients of expressions analytically or symboli-
cally is something that can be automated using a computer with
a Computer Algebra System (CAS), which is a piece of software
designed to apply analytic algebraic operations, including com-
puting derivatives. A CAS works by systematically applying the
same rules that we used by hand to reduce, simplify and solve
algebraic expressions in symbolic form.

Secondly, if we return to the original difference quotient ex-
pression we can see that it should be possible to create numerical
estimates of a gradient of a function by evaluating the difference
of the function at two points and dividing by the distance between
the points24. This numerical estimation of gradient is useful for
checking for errors that could occur when we hand-compute and
implement derivatives in code, and also has practical application
in problems where it can be hard to compute derivatives exactly.

Thirdly, there is an approach to numerically computing exact
(within the limits of the chosen floating point number repre-
sentation) gradients of programs, called automatic differentiation.
Automatic Differentiation is key to differentiating programs with
millions of parameters25. As the ‘programmer’ you still need to
have a really good intuition and understanding of what the im-
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plications of composing many functions will be on the gradients
of the parameters with respect to the objective for optimisation
to work successfully however.

1.2.4. What kinds of functional building blocks are
common?

Most modern differentiable programs are build around the idea
of performing operations on and with vectors, matrices and ten-
sors. The basic building blocks of differentiable programs that
are commonly in use today consist of binary operations which
act on an input with a set of weights:

• Vector addition: the input vector 𝒙 is added to a vector of weights
𝒘: 𝒙 + 𝒘. The vectors 𝒙 and 𝒘 must be from the same space
and thus have the same dimensionality.

• Element-wise multiplication: the input vector 𝒙 is multiplied
element-wise with the vector of weights 𝒘. This operation is
known as the the Hadamard Product, denoted by 𝒙 ⊙ 𝒘. The
vectors 𝒙 and 𝒘 must be from the same space and thus have
the same dimensionality.

• Matrix-vector multiplication: the input vector to the function is
multiplied with a matrix of weights. Given a matrix of weights
𝑾 and vector 𝒙 this would be denoted 𝑾𝒙.

• Convolution: the input vector 𝒙 is ‘convolved’ with a set of
weights 𝒘. Convolution is denoted as 𝒙 ∗ 𝒘. In practice most
implementations use a closely related operation called cross-
correlation, denoted 𝒙 ⋆ 𝒘. The vector 𝒘 is often referred to as
the kernel and is usually has much lower dimensionality than
the input 𝒙. ?? covers convolution in detail.

The above operations are often generalised to work on inputs that
are matrices or tensors. All of these operations are linear mappings
(even when extended to matrices or tensors). Assuming 𝔸 and
𝔹 are vector spaces over some field 𝔽 (such as the field of reals
ℝ), recall that a function 𝑓 ∶ 𝔸 → 𝔹 is said to be a linear mapping
if two conditions are satisfied: additivity,

𝑓 (𝒂 + 𝒃) = 𝑓 (𝒂) + 𝑓 (𝒃)

and homogeneity,
𝑓 (𝑐𝒂) = 𝑐𝑓 (𝒂) ,
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26 Prove this yourself in
exercise 1.3.

27 Interestingly the learning
dynamics using gradient
descent on a linear function
is non linear, so learning
weights of a single matrix
versus learning weights of
a multiplication of matrices
could give very different
results. See ?? for more on
this topic.
28 A nonlinearity applied
to an element of a vector
that is independent of other
elements of the vector.

30 A nonlinearity applied to
an element of a vector that is
a function of other elements
of the vector.

31 In many ways the softmax
turns an arbitrary vector
of values into a proper
probability density function,
with all values bounded
in [0, 1] and summing to
1. The input values to the
softmax are often referred
to as logits because they
can be seen to represent
log-probabilities. See ?? for
more discussion.

for any vectors 𝒂, 𝒃 ∈ 𝔸 and scalar 𝑐 ∈ 𝔽. Compositions of
linear functions are also linear functions26. This means for exam-
ple a series of matrix-vector multiplies could always be written
as a single matrix-vector multiply27. As such, it is common to
make the overall function be non-linear by following each linear
operation with an element-wise nonlinearity28. Commonly used
element-wise nonlinearities include:

The rectified linear unit (ReLU).
ReLU(𝑥) = max(0, 𝑥).

i
i
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The hyperbolic tangent, tanh(𝑥).
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A sigmoid29 function such as the
logistic 1

1+𝑒−𝑥 .
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29 A sigmoid function is an
‘S-shaped’ function that has
commonly has the effect of
squashing values into [0, 1]
allowing the output to be
interpreted as a probability.
If you see a reference to ‘the
sigmoid function’, then this
is actually referring to the
logistic function. See ??.

Sometimes we also use point-wise30 nonlinearities over an output,
𝒛 = (𝑧1,… , 𝑧𝐾) ∈ ℝ𝐾 of a composition or operation, such as the
softmax function,

softmax(𝒛)𝑖 =
𝑒𝑧𝑖

∑𝐾
𝑗=1 𝑒𝑧𝑗

for 𝑖 = 1,… , 𝐾 ,

which has the effect31 of making the largest element of the vector
𝒛 tend towards 1, and the other elements tend towards 0.

1.3. Real Examples of Differentiable
Programming

To wrap-up this introduction we give a number of examples
of how differentiable programs could be formulated to solve a
range of different tasks. We take a rather high-level functional
perspective and consider the inputs, outputs and objective. We
pay little attention to the inner formulation of the function, as
that is addressed in later chapters.
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Figure 1.5: Image Classification. A function 𝑓 with parameters 𝜽 predicts a distribution over a set of labels given an
input image. The highest scoring class label is selected as the prediction for the input image. During training the
parameters 𝜽 are optimised using gradients with respect to the known target score distribution for a large number
of labelled training image examples belonging to each of the classes.

32 At some point you would
need to discretise the output,
but functions that round
or take the ceiling or floor
of a real number are not
continuous and have useless
derivatives.

33 The categorical distribu-
tion is a discrete probability
distribution representing the
chance of a random variable
taking on one of 𝐾 possi-
bilities. It is also known as
the Generalised Bernoulli or
multinoulli distribution.

1.3.1. Image classification

We start with the application that kick-started the deep learning
revolution: image classification. A typical image classification
problem, illustrated in fig. 1.5, involves training a function 𝑓 with
parameters 𝜽 to be able to predict a single label 𝑙 given an input
image 𝗜,

𝑙 = 𝑓 (𝗜; 𝜽) .

The label 𝑙 would be defined to be drawn from a set of 𝑛 possible
labels, 𝑙 ∈ 0,…𝑛, where each integer label maps to a concept,
such as 0 = ‘dog’, 1 = ‘cat’,… 𝑛 = ‘goldfish’. The image would
typically be a 3D tensor with values representing the amount of
red, green and blue colour at each spatial position or pixel of the
image. We would have a large set of training data in the form
of pairs of images and labels which would be used to learn an
optimal set of parameters 𝜽.

The function defined above has a discrete integer output,
which would cause problems with gradient methods32. As such,
it’s common to redefine the function to return a vector ̂𝒚 ∈ ℝ𝑛,

̂𝒚 = 𝑓 (𝗜; 𝜽) ,

and define a objective function for training that tries to ensure
that for a particular training example with label 𝑙 that ̂𝑦𝑙 is larger
than all other elements of ̂𝒚. This small change allows for a model
and loss with well defined gradients. Once the model has been
trained it is possible to extract the actual class by computing
argmax ̂𝒚,

𝑙 = argmax ̂𝒚 = argmax 𝑓 (𝗜; 𝜽) .

This is illustrated in fig. 1.5. In practice we often conceptually
model the vector ̂𝒚 as containing the unnormalised log-probabilities
(“logits”), or as actual probabilities if the function 𝑓 incorporates
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35 Here the top-left coordi-
nate and width and height.
Other parameterisations,
such as the top-left and
lower-right corners as illus-
trated in fig. 1.7, could be
used however.

36 Pretending an ordered
output is actually unordered
introduces discontinuities
into the learning procedure
which hampers or stops
learning. See ?? for more
on this topic and a detailed
discussion of how to avoid it
in general problems.

a suitable normalisation, of a categorical distribution33. Logits are
trivially transformed to normalised probabilities by applying the
softmax. The true target label 𝑙 can be converted to an idealised
probability distribution, 𝒚 through a one-hot encoding; this cre-
ates a vector with zeros at all elements except for the 𝑙-th element
which takes a value of 1. Now that both targets and predictions
can be modelled as probability distributions, an obvious learning
objective would be to adjust the set of parameters 𝜽 such that
they maximise the likelihood that the model makes the correct
prediction over all the training examples. Because it is is com-
mon to actually perform a minimisation we would minimise the
negative likelihood, and for practical and numerical reasons it
makes sense to work with the negative log-likelihood34

34 This turns out to be
exactly equivalent to
minimising the
Kullback–Leibler (KL)
divergence between the
predicted probability
distribution and the
distribution formed by the
one-hot encoded target. As
such this loss is often
referred to as a cross-entropy.
We recap and explore this in
more detail in ??

.

1.3.2. Object detection

Building on the idea of a function that performs image classifi-
cation, could we go a step further and actually identify multiple
objects in an image and simultaneously detect their bounds? This
is the task of object detection. From a functional perspective this
task involves training a function 𝑓 with parameters 𝜽 to be able
to predict a (unordered) set of 𝑛𝑏 tuples corresponding to the 𝑛𝑏
objects in a given image

𝔹 = {(𝑥1, 𝑦1, 𝑤1, ℎ1, 𝑙1),… , (𝑥𝑛𝑏
, 𝑦𝑛𝑏

, 𝑤𝑛𝑏
, ℎ𝑛𝑏

, 𝑙𝑛𝑏
)} ,

where 𝑥, 𝑦, 𝑤, ℎ are the (real valued) parameters of the object’s
bounding box35, and as with image classification, 𝑙 ∈ 0,…𝑛, is an
integer label mapping to a concept. Formally we can write this as

𝔹 = 𝑓 (𝗜; 𝜽) .

Now as with the image classification example we have to make
some changes to make this differentiable and amenable to learn-
ing of the parameters. The key challenge to overcome is that
the output of the function is a set of vectors rather than say a
matrix of ordered vectors; whilst we can pretend that the output
is unordered even if it actually is not, doing so causes major prob-
lems with the ability to learn the parameters36. There are many
possible ways in which we can alter the object detection task to
make it learnable. We briefly describe two different alternatives:
anchor-based and set-prediction.
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Figure 1.6: Object Detection with Anchors. A function 𝑓 with parameters 𝜽 predicts a label for a set of each of a list
of anchor boxes, and simultaneously predicts changes in the offsets of the anchor box to make it more closely fit
the underlying object in the image. In the figure, anchor boxes are denoted by the 3 × 3 grid covering the image
space; in reality, multiple overlapping boxes of differing sizes and positions would be used. The highest scoring
class label is selected as the prediction for each anchor if the probability exceeds a threshold (many anchor boxes
will have low probability for all classes, and are thus ignored as belonging to the background). During training the
parameters 𝜽 are optimised using gradients with respect to a set of assignments of matching anchors (and their
computed offsets and class assignment) computed from the overlap of the anchors and the true bounding boxes
and class labels. After training, at inference time a non-differentiable algorithm called Non-Maximal Suppression
(NMS) is used to filter out multiple anchors assigned to the same object.

Anchor-based approaches. Anchor-based approaches fundamen-
tally change the prediction problem from being one of predicting
variable length sets of tuples to being one of predicting fixed-
length lists of tuples. As illustrated in fig. 1.6, a fixed set of prede-
fined ‘anchor boxes’ is placed over the image and the job of the
function is then to map each anchor box to an object by adjusting
the position, and predicting the class of the object within the
adjusted anchor. For training, the target output for a given image
is created by mapping the true set of object bounds and classes
to the best matching anchor boxes.

The downside of this approach is that often many anchor
boxes will end up being assigned to the same object (both during
training and during inference). A non-differentiable technique
called non-maximal suppression can be used to select only the
most relevant box for each object in the image. Unfortunately this
inherently means that the performance of the object detection
function is limited because it is being trained towards a proxy
objective rather than the actual objective.

Set prediction approaches. An alternative approach involves using
the original object detection formalisation and actually create a
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Figure 1.7: Object Detection with Set Prediction. A function 𝑓 with parameters 𝜽 directly predicts sets of 𝑁 bounding
boxes, labels and a binary mask. The function incorporates an internal optimisation procedure to fit predictions
to the input image based on the learned parameters 𝜽. During training the parameters 𝜽 are optimised to directly
match the ground truth boxes and labels (and the mask is used to remove unused/excess predictions). This form of
training requires the use of a permutation invariant loss. At inference time, predictions with a zero-valued mask are
removed and the label for each predicted box is computed by choosing the class with the highest probability.

37 Such representations are
common in differentiable
programs, and are often
referred to as latent represen-
tations because they are said
to capture the hidden char-
acteristics of the object from
which they are computed.

38 A loss function that is
permutation invariant with
respect to the order within
its two inputs. If the order
of the vectors within one
or both inputs changes, the
output should remain the
same. See ??.

function that truly returns unordered outputs, as shown in fig. 1.7.
The advantage of this approach is that we will directly optimise
the parameters of towards the task of detecting objects (so we
could expect better performance). The downside is that defining
a function that learns to produce sets of vectors is hard. One pos-
sible approach to generating sets is to actually use optimisation
within the function 𝑓𝜽 as follows:

𝔹 = 𝑓𝜽(𝗜) = min
𝔹

∥ ℎ(𝗜; 𝜽ℎ) − 𝑔(𝔹; 𝜽𝑔) ∥2

where 𝜽 = [𝜽ℎ; 𝜽𝑔], ℎ is a function that maps the image 𝗜 to a
compact vector representation37, and 𝑔 is a function that maps
the set 𝔹 to a latent representation.

Whilst this might look immensely complicated, the overall
idea is quite simple: when 𝑓 has been trained (i.e. 𝜽ℎ and 𝜽𝑔
have been learned), then given an image 𝗜, the function 𝑓 will
search for an optimal set of bounding boxes 𝔹 by performing a
minimisation of the distance between the latent representations
of the image and set of bounding boxes. If the parameters of
the function have been adequately trained, starting from a ran-
dom set of vectors the minimisation procedure should quickly
optimise the bounding boxes to fit the objects within the image.
This minimisation itself can be implemented using the gradient
descent algorithm we’ve seen previously. This is a an example of
a much more powerful differentiable program, where we are not
learning a fixed function, but rather learning the parameters of
an algorithm that can solve a task.

Training the model requires the use of a set loss38 that is invari-
ant to the ordering of the predicted and ground-truth bounding
boxes to ensure the correct mapping between each individual
prediction and target. As is illustrated in fig. 1.7 we often con-
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39 We will explore encoding
and embedding in ??. For
now, imagine a simple
one-hot encoding of each
word: consider that we
might form a list of every
possible unique word that
could appear in the input
which we call a vocabulary.
If there are 𝑁 words in
the vocabulary, we can
map the 𝑖-th word to an 𝑁-
dimensional vector, 𝒆𝑖 ∈ ℝ𝑁

where the 𝑖-th element has
a value of 1, and all other
values are zero.

sider that 𝑓 produces a fixed size set of 𝑁 vectors (𝑁 being the
maximum number of objects we expect to be able to find), and
allow each predicted bounding box to choose whether it should
be considered to be relevant by augmenting the bounding box
vector with a binary mask. This allows us to find fewer than 𝑁
objects in a given image by filtering out all the bounding boxes
with a mask value close to zero.

1.3.3. Language Translationi
i
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Figure 1.8: Language Translation. A function 𝑓 with parameters 𝜽 predicts a distribution over a sequence of a set
of words from the target language given an input in the source language. In the simplest case, as illustrated, the
highest scoring word is picked for each set in the sequence. One should note that 𝑓 does not operate on a single
input word at a time but rather considers sequences of consecutive words. Also, the output could have a different
number of words to the input.

Turning attention away from images, we will next consider
a problem involving natural language, and look at translating
one language to another. This process involves a function that
takes input text in the source language and provides as output
text in the target language as shown in fig. 1.8. Now, a differen-
tiable mathematical function 𝑓 cannot naturally take a sequence
of characters as input, so some process has to be used to encode or
embed each word as a 𝑁𝑖𝑛-dimensional vector39, and then often
put the entire sequence into a matrix, 𝑿 ∈ ℝ𝑤𝑖𝑛×𝑁𝑖𝑛 by stacking
the transposed vectors.

The output of the function is often also encoded as a sequence
of logits over the entire output vocabulary. Formalising, if their
were 𝑁𝑡 possible words in the target language vocabulary, and
𝑤𝑡 words are predicted, then,

̂𝒀 = 𝑓 (𝑿; 𝜽) ,

where 𝒀 is an 𝑤𝑡 × 𝑁𝑡 matrix. By applying the argmax function
across each row of 𝒀, it is possible to recover a sequence or vector
of the indexes of the particular words in the target vocabulary, ̂𝒚,
where

𝑦𝑖 = argmax𝒀𝑖,∶ .
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Figure 1.9: Playing games. We can train agents to solve sequential tasks such as playing games by defining a
differentiable function (often referred to as a policy) with parameters 𝜽. This policy predicts the probability
distribution over possible actions (here illustrated to be discrete actions of moving the left paddle up or down,
however modelling continuous actions is also possible), and the action that is taken is sampled from this. The input
is a sequential pair of images showing the state of the game in the current and previous time steps. The agent is
trained with the objective of maximising their score over the opponent. Clearly their is little information about what
move will maximise the score given a single pair of images, however it can be shown that its possible to get a useful
learning signal (the gradient with respect to 𝜽) from the expectation over many games and the sequences of actions
taken within them using what are known as Policy Gradient methods.

40 The decoding strategy
using argmax is known as
greedy decoding. Popular,
more powerful choices
include the viterbi algorithm
and beam search, which are
discussed in ??.

It should be noted that practical implementations of translation
functions (and actually broader classes of functions that produce
any sequences of discrete tokens) often employ more powerful
decoding strategies40 to turn each logit vector back into a word.

The function 𝑓 is often constructed as two sub-functions which
are composed: the encoder which turns the input text into a latent
representation, and the decoder which turns that vector into the
sequence of logit vectors. The decoder is commonly an auto-
regressive function which produces the logits for the next output
as a function of both the latent vector from the encoder, as well
as the encodings of the previously predicted output words.

In terms of training the model and learning the parameters 𝜽,
essentiallywe canminimise the sumof the negative log-likelihoods
between each predicted word and the target word for each posi-
tion in the sequence. In practice we sometimes employ additional
tricks such as teacher forcing (see ??) during trainingwhich forcibly
corrects errors during decoding.

1.3.4. Playing Games

You can use differentiable programming to write (and train)
‘agents’ that can play games. Take for example the classic com-
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41 This is just one of many
possible parameterisations
of the function; we could for
example provide a single
image in the form of the
difference between the
current and previous frames,
or provide multiple frames
going back further in time,
or even make the function
recurrent with its own
memory or state.

42 Policy gradients are not
the only way we can get use-
ful gradients for problems
involving discrete choices.
Policy gradients and alterna-
tive gradient estimators for
discrete choices are derived
and discussed in ??.

puter gamepong, which simulated a game of table tennis between
two players. In pong, the players have to move a paddle to de-
flect a ball, and a player accumulates points when the opposing
player misses the ball. As before we can formalise our agent as a
function 𝑓 with parameters 𝜽. Just like a human playing the game,
we can use a visual input. Because this game involves motion we
could choose to provide the current frame 𝗜𝑐𝑢𝑟𝑟 and the previous
frame 𝗜𝑝𝑟𝑒𝑣 as inputs41. The output of the function is the action 𝔸
that the agent chooses to perform. Formally we can write

𝔸 = 𝑓 (𝗜𝑐𝑢𝑟𝑟, 𝗜𝑝𝑟𝑒𝑣; 𝜽) .

In the case of a simple game of pong, the action 𝔸 would be the
discrete action of either moving the paddle up or moving the
paddle down as illustrated in fig. 1.9.

As in the previous examples, selection of a discrete action is
not amenable to gradient-based optimisation, so insteadwe could
choose to model the probability of the actions; in this particular
case with only two possible actions (up and down), we need
only model the probability of moving up, and the probability of
moving down is simply one minus this. As such, we can redefine
𝑓 to have a single scalar result 𝑝𝑢𝑝 in the range [0, 1] (possibly
achieved using a sigmoid function),

𝑝𝑢𝑝 = 𝑓 (𝗜𝑐𝑢𝑟𝑟, 𝗜𝑝𝑟𝑒𝑣; 𝜽) .

When playing the game our agent will just need to sample a dis-
crete action 𝑎 ∼ 𝑝𝑢𝑝 based on the probability.

In order to learn good values of 𝜽 for our function we need
an objective. Clearly maximising the agent’s score relative to
the opponent is an appropriate objective — the agent’s score
minus the opponents score will suffice as our reward function. This
learning problem falls into the category of reinforcement learning.

It should be clear that between most pairs of consecutive
frames from a game of pong the score will not change, so it will
be impossible to get usable gradients that will allow us to adjust 𝜽
at each step. A trick thatwill allowus to compute usable gradients
comes from noting that whilst a single game or move might not
have useful gradients, the expectation over many games and
moves will; this is the topic of policy gradient methods42. If we
denote the reward function as 𝑟(𝑎), which can simply take on
a value of 1 if the action 𝑎 was part of a sequence that led to a
game being won and −1 if the game was lost, then we just need
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to maximise
𝔼𝑎∼𝑝(a∣𝜽)[𝑟(𝑥)] ,

where 𝑝(a ∣ 𝜽) is modelled by our policy 𝑓 (𝗜𝑐𝑢𝑟𝑟, 𝗜𝑝𝑟𝑒𝑣; 𝜽). With a
little bit of simple algebraic manipulation it can be shown that
the gradient of this expectation with respect to 𝜽 is just a function
of the expectation of the gradient of our policy 𝑓, so as long as 𝑓 is
differentiable then we can just follow the gradients to maximise
our chance of winning many games.

Whilst pong is a relatively simple game, the broad idea of
using policy gradients is rather general. Recently we have wit-
nessed a lot of successes in the field of deep reinforcement learning
with agents playing games such as Chess, Go and StarCraft, and
winning against the best human players in the world at these
games.

1.3.5. Drawing

• We could envisage a differentiable function that takes in a set
of line coordinates and turns them into an image...

• With such a function we can optimise the line coordinates so
they e.g. match a photograph, thus automatically creating a
sketch.

1.4. Outlook

This book aims to expose the reader to modern differentiable
programming in some depth. The first part of the book covers
fundamentals from how differentiation can be used to solve com-
plex problems, the building blocks of neural networks, and the
increasingly important concepts of function reparameterisations
and relaxations that allow us to build more complex models. The
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second part looks at what is at the time of writing the contem-
porary set of building blocks and deep learning architectures.
In this part we also dive into where some of the inspiration for
these architectures has arisen from our understanding of biology
and brains, and also look at how the architectural choices can
result in the emergence of behaviours that mimic biological find-
ings. Finally, in the third part we look at research topics where
structures, priors and biases are being designed to induce certain
behaviours to occur within models, or to apply constraints to
parts of a model.

1.5. Exercises

Exercise 1.1

Construct a proof of the limit lim𝑥→0
sin𝑥

𝑥 = 1. Avoid using
L’Hôpital’s rule lim𝑥→𝑐

𝑓 (𝑥)
𝑔(𝑥) = lim𝑥→𝑐

𝑓 ′(𝑥)
𝑔′(𝑥) , as that would result

in a rather circular argument based on knowing sin′(𝑥) = cos(𝑥)
before we proved it in section 1.1.2.

Exercise 1.2

Compute the optimal angle for throwing a javelin. Assume that
there is no air resistance as in section 1.1.4, but this time assume
that the javelin flight starts from an initial height of ℎm.
What is the optimal angle when ℎ = 2m?

Exercise 1.3

Given 𝑓 ∶ 𝔸 → 𝔹 and 𝑔 ∶ 𝔹 → ℂ are two linear mappings, show
that 𝑔 ∘ 𝑓 ∶ 𝔸 → ℂ is also a linear mapping.
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2. The Building Blocks of
Learning Machines

2.1. Learning Paradigms

Types of Learning

• Supervised Learning - learn to predict an output when given
an input vector

• Unsupervised Learning - discover a good internal representa-
tion of the input

• Reinforcement Learning - learn to select an action to maximize
the expectation of future rewards (payoff)

• Self-supervised Learning - learn with targets induced by a
prior on the unlabelled training data

• Semi-supervised Learning - learn with few labelled examples
and many unlabelled ones

Supervised Learning
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8 Newell et al.

Fig. 5. Example output on MPII’s test set.

information for the network to determine which person deserves the annotation.
We deal with this by training the network to exclusively annotate the person in
the direct center. This is done in FLIC by centering along the x-axis according to
the torsobox annotation - no vertical adjustment or scale normalization is done.
For MPII, it is standard to utilize the scale and center annotations provided with
all images. For each sample, these values are used to crop the image around the
target person. All input images are then resized to 256x256 pixels. We do data
augmentation that includes rotation (+/- 30 degrees), and scaling (.75-1.25). We
avoid translation augmentation of the image since location of the target person
is the critical cue determining who should be annotated by the network.

The network is trained using Torch7 [48] and for optimization we use rmsprop
[49] with a learning rate of 2.5e-4. Training takes about 3 days on a 12 GB
NVIDIA TitanX GPU. We drop the learning rate once by a factor of 5 after
validation accuracy plateaus. Batch normalization [13] is also used to improve
training. A single forward pass of the network takes 75 ms. For generating final
test predictions we run both the original input and a flipped version of the image
through the network and average the heatmaps together (accounting for a 1%
average improvement on validation). The final prediction of the network is the
max activating location of the heatmap for a given joint.

The same technique as Tompson et al. [15] is used for supervision. A Mean-
Squared Error (MSE) loss is applied comparing the predicted heatmap to a
ground-truth heatmap consisting of a 2D gaussian (with standard deviation of
1 px) centered on the joint location. To improve performance at high precision
thresholds the prediction is o↵set by a quarter of a pixel in the direction of its
next highest neighbor before transforming back to the original coordinate space
of the image. In MPII Human Pose, some joints do not have a corresponding

Unsupervised Learning

Reinforcement Learning

Newell, Alejandro, Kaiyu Yang, and Jia Deng. “Stacked hourglass networks
for human pose estimation.” ECCV’16. Springer, 2016.

32



i
i

“output” — 2023/1/28 — 11:33 — page 33 — #52 i
i

i
i

i
i

Self-supervised Learning
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Semi-supervised Learning

Reference: Wikipedia https://simple.wikipedia.org/wiki/
Reinforcement_learning

Daniela Mihai and Jonathon Hare. Avoiding hashing and encouraging visual
semantics in referential emergent language games. EmeCom @ NeurIPS 2019.
https://arxiv.org/abs/1911.05546
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Generative Modelling

• Many unsupervised and self-supervisedmodels can be classed
as ‘Generative Models’.

• Given unlabelled data 𝑋, a unsupervised generative model
learns 𝑃[𝑋].

– Could be directmodelling of the data (e.g. GaussianMixture
Models)

– Could be indirect modelling by learning to map the data
to a parametric distribution in a lower dimensional space
(e.g. a VAEs Encoder) or by learning a mapping from a
parameterised distribution to the real data space (e.g. a VAE
Decoder or GAN)

• These are characterised by an ability to ‘sample’ the model to
‘create’ new data

Generative vs. Discriminative Models (II)

Generative vs. discriminative approaches to classification use
different statistical modelling.

• Discriminative models learn the boundary between classes. A
discriminative models is a model of the conditional probability
of the target 𝑌 given an observation 𝑋: 𝑃[𝑌|𝑋].

JeremyHoward. The wonderful and terrifying implications of computers that
can learn. TEDxBrussels. http://www.ted.com/talks/jeremy_howard_
the_wonderful_and_terrifying_implications_of_computers_
that_can_learn
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• Generative models of labelled data model the distribution of
individual classes. Given an observable variable 𝑋 and a target
variable 𝑌, a generative model is a statistical model that tries to
model 𝑃[𝑋|𝑌] and 𝑃[𝑌] in order to model the joint probability
distribution 𝑃[𝑋, 𝑌].1

2.2. A Supervised Learning Example

Two Types of Supervised Learning

• Classification: The machine is asked to specify which of 𝑘
categories some input belongs to.

– Multiclass classification - target is one of the 𝑘 classes

– Multilabel classification - target is some number of the 𝑘
classes

– In both cases, the machine is a function 𝑓 ∶ ℝ𝑛 → {1, ..., 𝑘}
(although it is most common for the learning algorithm to
actually learn ̂𝑓 ∶ ℝ𝑛 → ℝ𝑘).

• Regression: The machine is asked predict 𝑘 numerical values
given some input. The machine is a function 𝑓 ∶ ℝ𝑛 → ℝ𝑘.

• Note that there are lots of exceptions in the form the inputs
(and outputs) can take though! We’ll see lots of variations in
the coming weeks.

How Supervised Learning Typically Works

• Start by choosing a model-class: ̂𝑦 = 𝑓 (𝐱;𝐖) where the model-
class 𝑓 is a way of using some numerical parameters, 𝐖, to map
each input vector 𝐱 to a predicted output ̂𝑦.

• Learning means adjusting the parameters to reduce the dis-
crepancy between the true target output 𝑦 on each training
case and the output ̂𝑦, predicted by the model.
1Some such models can be sampled conditionally based on a prior

𝑌 - e.g. a Conditional VAE: https://papers.nips.cc/paper/
5775-learning-structured-output-representation-using-deep-conditional-generative-models
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Let’s look at an unbiased Multilayer Perceptron...

i
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Without loss of generality, we can write the above as:

�̂� = 𝑔(𝑓 (𝐱;𝐖(1));𝐖(2)) = 𝑔(𝐖(2)𝑓 (𝐖(1)𝐱))

where 𝑓 and 𝑔 are activation functions.

2.3. Activation Functions

Common Activation Functions

• Identity

• Sigmoid (aka Logistic)

• Hyperbolic Tangent (tanh)

• Rectified Linear Unit (ReLU) (aka Threshold Linear)

Final layer activations

̂𝑦 = 𝑔(𝐖(2)𝑓 (𝐖(1)𝐱))

• What form should the final layer function 𝑔 take?

• It depends on the task (and on the chosen loss function)...

– For regression it is typically linear (e.g. identity), but you
might choose others if you say wanted to clamp the range of
the network.
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– For binary classification (MLP has a single output), one
would choose Sigmoid

– For multilabel classification, typically one would choose Sig-
moid

– For multiclass classification, typically you would use the
Softmax function

Softmax

The softmax is an activation function used at the output layer
of a neural network that forces the outputs to sum to 1 so that
they can represent a probability distribution across a discrete
mutually exclusive alternatives.

softmax(𝐳)𝑖 =
𝑒𝑧𝑖

∑𝐾
𝑗=1 𝑒𝑧𝑗 ∀𝑖 = 1, 2,… , 𝐾

• Note that unlike the other activation functions you’ve seen,
softmax makes reference to all the elements in the output.

• The output of a softmax layer is a set of positive numberswhich
sum up to 1 and can be thought of as a probability distribution.

• Note:

𝜕 softmax(𝐳)𝑖
𝜕𝑧𝑖

= softmax(𝑧𝑖)(1 − softmax(𝑧𝑖))

𝜕 softmax(𝐳)𝑖
𝜕𝑧𝑗

= softmax(𝑧𝑖)(1(𝑖 = 𝑗) − softmax(𝑧𝑗))

= softmax(𝑧𝑖)(𝛿𝑖𝑗 − softmax(𝑧𝑗))

2.4. Objective Functions

Ok, so let’s talk loss functions

• The choice of loss function depends on the task (e.g. classifica-
tion/regression/something else)

• The choice also depends on the activation function of the last
layer

– For numerical reasons (see Log-Sum-Exp in a few slides)
many times the activation is computed directly within the
loss rather than being part of the model
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– Some classification losses require raw outputs (e.g. a linear
layer) of the network as their input

∗ These are often called unnormalised log probabilities or logits
∗ An example would be hinge-loss used to create a Sup-

port Vector Machine that maximises the margin — e.g.:
ℓℎ𝑖𝑛𝑔𝑒( ̂𝑦, 𝑦) = max(0, 1−𝑦⋅ ̂𝑦)with a true label, 𝑦 ∈ {−1, 1},
for binary classification.

• There are many different loss functions we might encounter
(MSE, Cross-Entropy, KL-Divergence, huber, L1 (MAE), CTC,
Triplet, ...) for different tasks.

The Cost Function (measure of discrepancy)

Recall from Foundations of Machine Learning:

• Mean Squared Error (MSE) loss for a single data point (here
assumed to be a vector, but equally applicable to a scalar) is
given by

ℓ𝑀𝑆𝐸(�̂�, 𝐲) = ∑𝑖( ̂𝑦𝑖 − 𝑦𝑖)2 = (�̂� − 𝐲)⊤(�̂� − 𝐲)

• We often multiply this by a constant factor of 1
2 — can anyone

guess/remember why?

• ℓ𝑀𝑆𝐸(�̂�, 𝐲) is the predominant choice for regression problems
with linear activation in the last layer

• For a classification problem with Softmax or Sigmoidal (or
really anything non-linear) activations, MSE can cause slow
learning, especially if the predictions are very far off the targets

– Gradients of ℓ𝑀𝑆𝐸 are proportional to the difference in target
and predicted multiplied by the gradient of the activation
function2

– The Cross-Entropy loss function is generally a better choice
in this case

Binary Cross-Entropy

For the binary classification case:

ℓ𝐵𝐶𝐸( ̂𝑦, 𝑦) = −𝑦 log( ̂𝑦) − (1 − 𝑦) log(1 − ̂𝑦)
2http://neuralnetworksanddeeplearning.com/chap3.html
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• The cross-entropy cost function is non-negative, ℓ𝐵𝐶𝐸 > 0

• ℓ𝐵𝐶𝐸 ≈ 0 when the prediction and targets are equal (i.e. 𝑦 = 0
and ̂𝑦 = 0 or when 𝑦 = 1 and ̂𝑦 = 1)

• With Sigmoidal final layer, 𝜕ℓ𝐵𝐶𝐸

𝜕𝐖(2)
𝑖

is proportional to just the
error in the output ( ̂𝑦 − 𝑦) and therefore, the larger the error,
the faster the network will learn!

• Note that the BCE is the negative log likelihood of the Bernoulli
Distribution

Binary Cross-Entropy — Intuition

• The cross-entropy can be thought of as a measure of surprise.

• Given some input 𝑥𝑖, we can think of ̂𝑦𝑖 as the estimated prob-
ability that 𝑥𝑖 belongs to class 1, and 1 − ̂𝑦𝑖 is the estimated
probability that it belongs to class 0.

• Note the extreme case of infinite cross-entropy, if your model
believes that a class has 0 probability of occurrence, and yet
the class appears in the data, the ‘surprise’ of your model will
be infinitely great.

Binary Cross-Entropy for multiple labels

In the case of multi-label classification with a network with
multiple sigmoidal outputs you just sum the BCE over the out-
puts:

ℓ𝐵𝐶𝐸 = −∑𝐾
𝑘=1[𝑦𝑘 log( ̂𝑦𝑘) + (1 − 𝑦𝑘) log(1 − ̂𝑦𝑘)]

where 𝐾 is the number of classes of the classification problem,
̂𝑦 ∈ ℝ𝐾.

Numerical Stability: The Log-Sum-Exp trick

ℓ𝐵𝐶𝐸( ̂𝑦, 𝑦) = −𝑦 log( ̂𝑦) − (1 − 𝑦) log(1 − ̂𝑦)

• Consider what might happen early in training when the model
might confidently predict a positive example as negative

– ̂𝑦 = 𝜎(𝑧) ≈ 0 ⟹ 𝑧 << 0
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– if ̂𝑦 is small enough, it will become 0 due to limited precision
of floating-point representations

– but then log( ̂𝑦) = − inf, and everything will break!

• To tackle this problem implementations usually combine the
sigmoid computation and BCE into a single loss function that
youwould apply to a networkwith linear outputs (e.g. BCEWithLogitsLoss).

• Internally, a trick called ‘log-sum-exp’ is used to shift the centre
of an exponential sum so that only numerical underflow can
potentially happen, rather than overflow3.

– Ultimately this means you’ll always get a numerically rea-
sonable result (and will avoid NaNs and Infs originating
from this point).

Multiclass classification with Softmax Outputs

• Softmax can be thought ofmaking the𝐾 outputs of the network
mimic a probability distribution.

• The target label 𝑦 could also be represented as a distribution
with a single 1 and zeros everywhere else.

– e.g. they are “one-hot encoded”.

• In such a case, the obvious loss function is the negative log
likelihood of the Categorical distribution (aka Multinoulli, Gen-
eralised Bernoulli, Multinomial with one sample)4: ℓ𝑁𝑁𝐿 =
−∑𝐾

𝑘=1 𝑦𝑘 log ̂𝑦𝑘

– Note that in practice as 𝑦𝑘 is zero for all but one class you
don’t actually do this summation, and if 𝑦 is an integer class
index you can write ℓ𝑁𝑁𝐿 = − log ̂𝑦𝑦.

• Analogously to what we saw for BCE, Log-Sum-Exp can be
used for better numerical stability.

– PyTorch combines LogSoftmax with NNL in one loss and
calls this “Categorical Cross-Entropy” (so you would use
this with a linear output layer)

3https://www.xarg.org/2016/06/the-log-sum-exp-trick-in-machine-learning/
4Note: Keras calls this function ‘Categorical Cross-Entropy’; you would need

to have a Softmax output layer to use this
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2.5. Gradient-based learning

Reminder: Gradient Descent

• Define total loss as ℒ = −∑(𝐱,𝑦)∈𝐃 ℓ(𝑔(𝐱, 𝛉), 𝑦) for some loss
function ℓ, dataset 𝐃 and model 𝑔 with learnable parameters
𝛉.

• Define how many passes over the data to make (each one
known as an Epoch)

• Define a learning rate 𝜂

Gradient Descent updates the parameters 𝛉 by moving them
in the direction of the negative gradient with respect to the total
loss ℒ by the learning rate 𝜂 multiplied by the gradient: [1em]
for each Epoch: 𝛉 ← 𝛉 − 𝜂∇𝛉ℒ

Reminder: Stochastic Gradient Descent

• Define loss function ℓ, dataset 𝐃 and model 𝑔 with learnable
parameters 𝛉.

• Define how many passes over the data to make (each one
known as an Epoch)

• Define a learning rate 𝜂

Stochastic Gradient Descent updates the parameters 𝛉 bymov-
ing them in the direction of the negative gradient with respect to
the loss of a single item ℓ by the learning rate 𝜂 multiplied by the
gradient: [1em] for each Epoch: for
each (𝐱, 𝑦) ∈ 𝐃: 𝛉 ← 𝛉 − 𝜂∇𝛉ℓ

2.6. The programming perspective:
Tensors and Vectorisation

Now we’ve recapped some of the basics of learning machines we
turn our attention to programming, and translating these ideas
and algorithms into code that can be executed. Most importantly
however, we are going to focus on writing efficient code that
makes full use of modern computing hardware. We will not go
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into the gritty details of writingmachine code, but rather focus on
a higher-level mathematical and programming abstraction using
objects called tensors that let us write and construct differentiable
programs with ease.

Throughout this book we utilise a tensor programming frame-
work called PyTorch which interfaces with the python pro-
gramming language. PyTorch is just one of a number of popu-
lar tensor programming frameworks, and you might have heard
of others such as TensorFlow or Jax. These frameworks take
slightly different approaches but broadly offer the same feature
set. We predominantly use PyTorch in this book as it is proba-
bly the most popular framework for differentiable programming
and deep learning research at the time of writing and is what we
use in our research lab. Most importantly though, PyTorch lets
us easily write a wide range of differentiable programs that go
beyond simple deep learning models as we’ll see later on.

2.6.1. Tensors, operations and views

Broadly speaking a tensor is defined as a linear mapping between
sets of algebraic objects5.

A tensor 𝑇 can be thought of as a generalization of scalars,
vectors and matrices to a single algebraic object.

We can just think of this as a multidimensional array6.

• A 0𝐷 tensor is a scalar

• A 1𝐷 tensor is a vector

• A 2𝐷 tensor is a matrix

• A 3𝐷 tensor can be thought of as a vector of identically sized
matrices

• A 4𝐷 tensor can be thought of as a matrix of identically sized
matrices or a sequence of 3𝐷 tensors

• …
5This statement is always entirely true
6This statement will upset mathematicians and physicists because its not

always true for them (but it is for us!).
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Operations

Element-wise operations.

Batch-wise operations and broadcasting.

Tensor-wise operations.

Einstein summation.

Viewing and reshaping tensors

2.6.2. Working with Batches of Data

2.6.3. Superscalar Compute and Code Vectorisation

Example: vectorised logistic regression

2.6.4. Tensor Tricks

Operations on Tensors in PyTorch

• PyTorch lets you do all the standard matrix operations on 2D
tensors

– including important things you might not yet have seen like
the hadamard product of two 𝑁 ×𝑀 matrices: 𝐀 ⊙ 𝐁)

• You can do element-wise add/divide/subtract/multiply to ND-
tensors

– and even apply scalar functions element-wise (log, sin, exp, ...)

• PyTorch often lets you broadcast operations (just like in numpy)

– if a PyTorch operation supports broadcast, then its Tensor
arguments can be automatically expanded to be of equal
sizes (without making copies of the data).7

7Important - read and understand this after the lab next week: https://py-
torch.org/docs/stable/notes/broadcasting.html
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Homework

PyTorch Tensor 101:
https://colab.research.google.com/gist/

jonhare/d98813b2224dddbb234d2031510878e1/
notebook.ipynb

s
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43 A recommender system
is a piece of software that at-
tempts to predict ratings or
rankings of items. In collab-
orative filtering, the system
makes predictions about
the interests (the ‘items’) of
a particular user based on
the recorded preferences of
other users of the system.

3. The Power of
Differentiation

Clearly differentiable programming involves the process of com-
puting derivatives and estimating gradients. This chapter will
start by recapping the fundamentals of gradient-based optimisa-
tion, differentiation and partial differentiation. We’ll look at how
differentiation can be extended to functions involving operations
on matrices and tensors, and the notions of gradient vectors and
matrices of derivatives (the Jacobian).

The chapter ends by walking through two practical applica-
tions in which these concepts can be applied to learn predictive
models from actual data: the linear soft-margin support vector
machine, and a neat approach to computing the Singular Value
Decomposition and performing matrix completion that was the
basis of the collaborative filtering based recommender system43

that won the Netflix Prize.

3.1. The big idea: optimisation by
following gradients

• Fundamentally, we’re interested in machines that we train by
optimising parameters

– How do we select those parameters?

• In deep learning/differentiable programming we typically de-
fine an objective function that we minimise (or maximise) with
respect to those parameters

• This implies that we’re looking for points at which the gradient
of the objective function is zero w.r.t the parameters

• Gradient based optimisation is a big field!
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– First order methods, second order methods, subgradient
methods...

• With deep learning we’re primarily interested in first-order
methods1.

– Primarily using variants of gradient descent: a function 𝐹(𝐱)
has a minima2 at a point 𝐱 = 𝐚 where 𝐚 is given by applying
𝐚𝑛+1 = 𝐚𝑛 − 𝛼∇𝐹(𝐚𝑛) until convergence from some initial
point 𝐚0.

3.2. Recap: what are gradients and how do
we find them?

3.2.1. The derivative in 1D

• Recall that the gradient of a straight line is 𝛥𝑦
𝛥𝑥 .

• For an arbitrary real-valued function, 𝑓 (𝑎), we can approximate
the derivative, 𝑓 ′(𝑎) using the gradient of the secant line defined
by (𝑎, 𝑓 (𝑎)) and a point a small distance, ℎ, away (𝑎+ℎ, 𝑓 (𝑎+ℎ)):
𝑓 ′(𝑎) ≈ 𝑓 (𝑎+ℎ)−𝑓 (𝑎)

ℎ .

– This expression is ‘Newton’s Quotient’.

– As ℎ becomes smaller, the approximated derivative becomes
more accurate.

– Ifwe take the limit as ℎ → 0, thenwe have an exact expression
for the derivative: 𝑑𝑓

𝑑𝑎 = 𝑓 ′(𝑎) = limℎ→0
𝑓 (𝑎+ℎ)−𝑓 (𝑎)

ℎ .

3.2.2. Numerical approximation of the derivative

Clearly one can estimate a derivative numerically by evaluating
the difference of a function at two points that are close together.
Rather than using the Newton’s quotient, for numerical compu-
tation of derivatives it is better to use a centralised definition of
the derivative, the symmetric derivative,

𝑓 ′(𝑎) = lim
ℎ→0

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎 − ℎ)
2ℎ .

1Second order gradient optimisers are potentially better, but for systems with
many variables are currently impractical as they require computing the Hessian.

2not necessarily global or unique
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44 This is an example of a
function that is differentiable
almost everywhere. Such
functions are common
components in differentiable
programming, usually also
with the condition that they
are continuous functions.

The expression under this limit is known as the symmetric differ-
ence quotient. Functions that are differentiable (in the usual sense
of Newton’s quotient) are also symmetrically differentiable, how-
ever not all functions that are symmetrically differentiable are
differentiable. A common example would be 𝑓 (𝑥) = |𝑥|, which
is symmetrically differentiable with a symmetric derivative of 0
at 𝑥 = 0, but is not differentiable because the derivative at 0 is
undefined44.

For small values of ℎ the symmetric difference quotient has
less error than the standard one-sided difference quotient. To
understand this we need to think about two sources of error: the
truncation error from the difference quotient expressions and
the roundoff error from using floating-point number representa-
tions. The truncation error of the derivative can be analysed by
considering the Taylor series expansion of the Newton’s Quotient,

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ =

𝑓 (𝑥) + ℎ𝑓 ′(𝑥) + ℎ2

2 𝑓 ″(𝑥) + ⋯− 𝑓 (𝑥)
ℎ

= 𝑓 ′(𝑥) +
ℎ𝑓 ″(𝑥)

2 + 𝑂(ℎ2)

Thus the truncation error is approximately ℎ𝑓 ″(𝑥)
2 . Now consider

the expansion of the symmetric difference quotient,

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥 − ℎ)
2ℎ =

𝑓 (𝑥) + ℎ𝑓 ′(𝑥) + ℎ2

2 𝑓 ″(𝑥) + ⋯− 𝑓 (𝑥) + ℎ𝑓 ′(𝑥) − ℎ2

2 𝑓 ″(𝑥) + …
2ℎ

= 𝑓 ′(𝑥) +
ℎ2𝑓 ‴(𝑥)

3! + 𝑂(ℎ3)

This time the error term is approximately ℎ2𝑓 ‴(𝑥)
6 . Because ℎ is

positive and ℎ ≪ 1, it follows that ℎ2 ≪ ℎ, so we expect there to
be lower error with the symmetric difference quotient.

Obviously smaller values of ℎ will give estimates that are
closer to the true derivative of the function in question, however
the second type of error, the roundoff error, comes into play: if
ℎ is chosen to be too small there will be a large rounding error.
Assume that because of our finite precision floating point repre-
sentations that there is a rounding error of 𝜖 in representing the
value of 𝑓 (𝑥). Consider the worst case scenario of the rounding
error of 𝑓 (𝑥) and error of 𝑓 (𝑥 + ℎ) having the same magnitude
but opposite sign; in this case the rounding error in representing
𝑓 ′(𝑥) would be 2𝜖

ℎ . We can write the total error (the truncation er-
ror plus the rounding error) for approximations using Newton’s
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45 Note that the optimal ℎ0
is a function of the second
derivative of the function
(which is wrapped up in
the 𝐾 term). Clearly the
implication of this is that if
we want to actually use the
optimal step size for com-
puting the derivatives of a
function we already need to
know something about the
function which in general is
not possible, hence the need
to make assumptions and
approximations.

quotient as

𝐸(ℎ) = 𝐾ℎ +
2𝜖
ℎ ,

where 𝐾 is a constant made up of the second derivative and divi-
sor. Clearly as ℎ → 0 the truncation error goes to zero, however
at the same time the roundoff error goes to infinity. To find the
optimal value of ℎ that minimises the error we can differentiate,
set to zero and rearrange for the optimal ℎ, which we will call
ℎ(𝑛𝑒𝑤𝑡𝑜𝑛)

0 :
d𝐸(ℎ)
dℎ = 𝐾 −

2𝜖
ℎ2 = 0

⟹ ℎ(𝑛𝑒𝑤𝑡𝑜𝑛)
0 = √2𝜖

𝐾 .

If we assume45 that √ 2
𝐾 ≈ 1 and that 𝜖 ≈ 10−𝑛, then ℎ(𝑛𝑒𝑤𝑡𝑜𝑛)

0 ≈

10− 𝑛
2 . This implies the error would be,

𝐸(ℎ(𝑛𝑒𝑤𝑡𝑜𝑛)
0 ) ≈ 𝐾 ⋅ 10− 𝑛

2 +
2 ⋅ 10−𝑛

10− 𝑛
2

≈ (𝐾 + 2)10− 𝑛
2 ≈ 10− 𝑛

2 .

The take-awaymessage from this is that if our computer hardware
can give us number representations with 𝑛 digits of precision,
then using Newton’s quotient we can expect to get about 𝑛

2 digits
correct.

Ifwe follow the sameprinciple to derive an optimal ℎ(𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)
0

for the symmetric difference quotient, we arrive at

𝐸(ℎ) = �̃�ℎ2 +
𝜖
ℎ , and,

ℎ(𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)
0 = 3√

𝜖
2�̃�

.

Assuming 3√ 1
2�̃�

≈ 1, and that 𝜖 ≈ 10−𝑛 as before, then the error
is,

𝐸(ℎ(𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)
0 ) ≈ �̃� ⋅ 10

−2𝑛
3 +

10−𝑛

10
−𝑛
3

≈ (�̃� + 1) ⋅ 10
−2𝑛

3 ≈ 10
−2𝑛

3 .

This implies that for the same hardware precision as above we
would expect to get about 2𝑛

3 digits correct with the symmetric
difference quotient, and thus the symmetric quotient is a much
better choice in terms of minimising the total error.

The above analysis looks at the magnitude of error in terms
of correct digits. In digital computer hardware this isn’t some-
thing we have exact control over because of the way floating point
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46 There is also a half preci-
sion (usually 16 bits), which
is sometimes used in dif-
ferentiable programming
(but not with numerical
differentiation as the errors
would be too high), and long
double precision (typically 80
bits or 128 bits depending
on the hardware architec-
ture) which is often used for
things like high-precision
physics simulations.
47

numbers are represented in binary. The most common represen-
tations of floating point numbers are 32-bit single precision, and
64-bit double precision defined by the IEEE 754 standard46. These
floating point representations actually have a different number
of digits precision for different numbers. Broadly speaking the
double precision format (approx 15.95 correct digits) has slightly
over twice the number of digits of accuracy than the single format
(approx 7.22 correct digits). In terms of good values for the step
size ℎwhen the function is unknown, for the symmetric difference
formula a value of ℎ∗ = 3√𝜖, where 𝜖 is the machine epsilon47 for
the particular floating point representation and hardware combi-
nation being used. For Newton’s quotient 𝑓 (𝑥 + ℎ)− 𝑓 (𝑥), a value
of ℎ∗ = √𝜖𝑥 is appropriate if 𝑥 is not zero.

Finally, a further, a problem particularly with the single pre-
cision format is that if even if 𝑥 is a representable floating point
number (that is the rounding error is zero), then 𝑥 + ℎ almost
certainly is not representable and will be rounded to the nearest
representable number. The implication of this is that (𝑥 + ℎ) − 𝑥
will not be ℎ, so this needs to be accounted for in the difference
quotient. Unfortunately compiler optimisations based on the
axioms of arithmetic, where the compiler recognises that mathe-
matically (𝑥 + ℎ) − 𝑥 should equal ℎ, can actually make this hard
to implement correctly.

To put this discussion of the optimal step size and the trade-off
in errors into context, we can actually simulate the computation
of numerical gradients of a function for which we know the true
derivative with code, and plot the total error. The following
code example does just this for the function 𝑦 = 𝑥3 using both
Newton’s quotient and the symmetric difference with both single
and double precision.

1 import numpy as np
2 import pandas as pd
3 import seaborn as sb
4
5
6 def f(x):
7 return x**3
8
9 def fprime(x):

10 return 3*x**2
11
12 def newton(fcn, x, h=0.0001):
13 return (fcn(x + h) - fcn(x)) / h
14
15 def symmetric(fcn, x, h=0.0001):
16 return (fcn(x + h) - fcn(x - h)) / (2 * h)
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Figure 3.1: Error tradeoff in numerically estimating the derivative of 𝑦 = 𝑥3 as a function of the step ℎ in the difference
quotient. The competing effects of the truncation error which reduces as ℎ → 0 (the tight linear relationship on the
right side) and the roundoff error which decreases as ℎ increases (the noisy linear relationship on the left) can be
clearly seen. Use of the symmetric difference quotient results in lower error given the optimal step size. Error with
32-bit floating point representations, even with optimal ℎ, is likely to be too great to rely on for real applications.

17
18 data = {'h':[], 'dtype': [], 'algorithm':[], 'error':[]}
19
20 for dtype in ['float32', 'float64']:
21 for algorithm in [newton, symmetric]:
22 x = np.array([0.5], dtype=dtype)
23 h = np.logspace(-17, -0, 100, dtype=dtype)
24
25 estimate = algorithm(f, x, h)
26 data['h'].append(h)
27 data['error'].append(np.abs(estimate - fprime(x)))
28 data['algorithm'].append([algorithm.__name__] * len(

estimate))
29 data['dtype'].append([dtype] * len(estimate))
30
31 df = pd.DataFrame({k: np.hstack(v) for k, v in data.items

()})
32
33 splot = sb.scatterplot(data=df, x='h', y='error',
34 hue='dtype', style='algorithm')
35 splot.set(xscale='log', yscale='log')

Running the above code results in the log-log plot illustrated
in fig. 3.1. One can clearly see the trade-off in the dominance of
the two types of error, with the rounding errors on the left sides
of the trend and truncation errors on the right. The significant
effect of the choice of floating point precision and approximation

50



i
i

“output” — 2023/1/28 — 11:33 — page 51 — #70 i
i

i
i

i
i

algorithm is also evident.

3.2.3. Vector functions

Now we have a good understanding of the derivatives of scalar-
valued functions, lets next consider the gradients of functions
that return vectors, such as 𝒚(𝑡). Such functions can be split into
their constituent coordinate functions: 𝒚(𝑡) = (𝑦1(𝑡),… , 𝑦𝑛(𝑡)).

• – This can be split into its constituent coordinate functions:
𝐲(𝑡) = (𝑦1(𝑡),… , 𝑦𝑛(𝑡)).

– Thus the derivative is a vector (the ‘tangent vector’), 𝐲′(𝑡) =
(𝑦′

1(𝑡),… , 𝑦′
𝑛(𝑡)), which consists of the derivatives of the co-

ordinate functions.

– Equivalently, 𝐲′(𝑡) = limℎ→0
𝐲(𝑡+ℎ)−𝐲(𝑡)

ℎ if the limit exists.

Recap: what are gradients and how do we find them?
Functions of multiple variables: partial differentiation

• What if the function we’re trying to deal with has multiple
variables3 (e.g. 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2)?

– This expression has a pair of partial derivatives, 𝜕𝑓
𝜕𝑥 = 2𝑥 + 𝑦

and 𝜕𝑓
𝜕𝑦 = 𝑥+2𝑦, computed by differentiating with respect to

each variable 𝑥 and 𝑦 whilst holding the other(s) constant.

• In general, the partial derivative of a function 𝑓 (𝑥1,… , 𝑥𝑛) at a
point (𝑎1,… , 𝑎𝑛) is given by: 𝜕𝑓

𝜕𝑥𝑖
(𝑎1,… , 𝑎𝑛) = limℎ→0

𝑓 (𝑎1…,𝑎𝑖+ℎ,…,𝑎𝑛)−𝑓 (𝑎1…,𝑎𝑖,…,𝑎𝑛)
ℎ .

• The vector of partial derivatives of a scalar-value multivariate
function, 𝑓 ((𝑥1,… , 𝑥𝑛) at a point (𝑎1,… , 𝑎𝑛), can be arranged
into a vector: ∇𝑓 (𝑎1,… , 𝑎𝑛) = ( 𝜕𝑓

𝜕𝑥1
(𝑎1,… , 𝑎𝑛),… , 𝜕𝑓

𝜕𝑥𝑛
(𝑎1,… , 𝑎𝑛)).

– This is the gradient of 𝑓 at 𝑎.

• In the case of a vector-valued multivariate function, the partial
derivatives form a matrix called the Jacobian.
3A multivariate function
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Recap: what are gradients and how do we find them?
Functions of vectors and matrices: partial differentiation

• For the kinds of functions (and programs) that we’ll look at
optimising in this course have a number of typical properties:

– They are scalar-valued
∗ We’ll look at programs with multiple losses, but ultimately

we can just consider optimising with respect to the sum of
the losses.

– They involve multiple variables, which are often wrapped
up in the form of vectors or matrices, and more generally
tensors.

– How will we find the gradients of these?

Recap: what are gradients and how do we find them?
The chain rule for vectors

Suppose that 𝐱 ∈ ℝ𝑚, 𝐲 ∈ ℝ𝑛, 𝑔 maps from ℝ𝑚 to ℝ𝑛 and 𝑓
maps from ℝ𝑛 to ℝ.

If 𝐲 = 𝑔(𝐱) and 𝑧 = 𝑓 (𝐲), then

𝜕𝑧
𝜕𝑥𝑖

= ∑
𝑗

𝜕𝑧
𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑥𝑖
.

Equivalently, in vector notation:

∇𝐱𝑧 = (
𝜕𝐲
𝜕𝐱 )

⊤∇𝐲𝑧

where 𝜕𝐲
𝜕𝐱 is the 𝑛 × 𝑚 Jacobian matrix of 𝑔.

Recap: what are gradients and how do we find them?
The chain rule for Tensors

• Conceptually, the simplest way to think about gradients of
tensors is to imagine flattening them into vectors, computing
the vector-valued gradient and then reshaping the gradient
back into a tensor.

– In this waywe’re still just multiplying Jacobians by gradients.

• More formally, consider the gradient of a scalar 𝑧 with respect
to a tensor X to be denoted as ∇X𝑧.
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– Indices into X now have multiple coordinates, but we can
generalise by using a single variable 𝑖 to represent the com-
plete tuple of indices.

∗ For all index tuples 𝑖, (∇X𝑧)𝑖 gives
𝜕𝑧
𝜕X𝑖

.

– Thus, if Y = 𝑔(X) and 𝑧 = 𝑓 (Y) then ∇X𝑧 = ∑𝑗(∇XY𝑗)
𝜕𝑧
𝜕Y𝑗

.

Recap: what are gradients and how do we find them?
Example: ∇𝐖𝑓 (𝐗𝐖)

• Let 𝐃 = 𝐗𝐖 where the rows of 𝐗 ∈ ℝ𝑛×𝑚 contain some fixed
features, and 𝐖 ∈ ℝ𝑚×ℎ is a matrix of weights.

• Also let ℒ = 𝑓 (𝐃) be some scalar function of 𝐃 that we wish
to minimise.

• What are the derivatives of ℒ with respect to the weights 𝐖?

Recap: what are gradients and how do we find them?
Example: ∇𝐖𝑓 (𝐗𝐖)

• Start by considering a specificweight,𝑊𝑢𝑣:
𝜕ℒ

𝜕𝑊𝑢𝑣
= ∑𝑖,𝑗

𝜕ℒ
𝜕𝐷𝑖𝑗

𝜕𝐷𝑖𝑗

𝜕𝑊𝑢𝑣
.

• We know that
𝜕𝐷𝑖𝑗

𝜕𝑊𝑢𝑣
= 0 if 𝑗 ≠ 𝑣 because 𝐷𝑖𝑗 is the dot product

of row 𝑖 of 𝐗 and column 𝑗 of 𝐖.

• Therefore, we can simplify the summation to only consider
cases where 𝑗 = 𝑣: ∑𝑖,𝑗

𝜕ℒ
𝜕𝐷𝑖𝑗

𝜕𝐷𝑖𝑗

𝜕𝑊𝑢𝑣
= ∑𝑖

𝜕ℒ
𝜕𝐷𝑖𝑣

𝜕𝐷𝑖𝑣
𝜕𝑊𝑢𝑣

.

• What is 𝜕𝐷𝑖𝑣
𝜕𝑊𝑢𝑣

?

𝐷𝑖𝑣 =
𝑞

∑
𝑘=1

𝑋𝑖𝑘𝑊𝑘𝑣

𝜕𝐷𝑖𝑣
𝜕𝑊𝑢𝑣

=
𝜕

𝜕𝑊𝑢𝑣

𝑞

∑
𝑘=1

𝑋𝑖𝑘𝑊𝑘𝑣 =
𝑞

∑
𝑘=1

𝜕
𝜕𝑊𝑢𝑣

𝑋𝑖𝑘𝑊𝑘𝑣

∴
𝜕𝐷𝑖𝑣
𝜕𝑊𝑢𝑣

= 𝑋𝑖𝑢
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Recap: what are gradients and how do we find them?
Example: ∇𝐖𝑓 (𝐗𝐖)

• Putting every together, we have: 𝜕ℒ
𝜕𝑊𝑢𝑣

= ∑𝑖
𝜕ℒ

𝜕𝐷𝑖𝑣
𝑋𝑖𝑢.

• As we’re summing over multiplications of scalars, we can
change the order: 𝜕ℒ

𝜕𝑊𝑢𝑣
= ∑𝑖 𝑋𝑖𝑢

𝜕ℒ
𝜕𝐷𝑖𝑣

.

• and note that the sum over 𝑖 is doing a dot product with row 𝑢
and column 𝑣 if we transpose 𝑋𝑖𝑢 to 𝑋⊤

𝑢𝑖:
𝜕ℒ

𝜕𝑊𝑢𝑣
= ∑𝑖 𝑋

⊤
𝑢𝑖

𝜕ℒ
𝜕𝐷𝑖𝑣

.

• We can then see that if wewant this for all values of𝐖 it simply
generalises to: 𝜕ℒ

𝜕𝐖 = 𝐗⊤ 𝜕ℒ
𝜕𝐃 .

Recap: Singular Value Decomposition and its applications

Let’s now change direction - we’re going to look at an early
success story resulting from using some differentiation and the
Singular Value Decomposition (SVD). [1em] For complex 𝐀 ∶

𝐀 = 𝐔𝚺𝐕∗

where 𝐕∗ is the conjugate transpose of 𝐕.[1em] For real 𝐀 ∶

𝐀 = 𝐔𝚺𝐕⊤

Recap: Singular Value Decomposition and its applications

• SVD has many uses:

– Computing the Eigendecomposition:
∗ Eigenvectors of 𝐀𝐀⊤ are columns of 𝐔,
∗ Eigenvectors of 𝐀⊤𝐀 are columns of 𝐕,
∗ and the non-zero values of 𝚺 are the square roots of the

non-zero eigenvalues of both 𝐀𝐀⊤ and 𝐀⊤𝐀.
– Dimensionality reduction

∗ ...use to compute PCA
– Computing the Moore-Penrose Pseudoinverse

∗ for real 𝐀: 𝐀+ = 𝐕𝚺+𝐔⊤ where 𝚺+ is formed by taking
the reciprocal of every non-zero diagonal element and
transposing the result.
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– Low-rank approximation and matrix completion

∗ if you take the 𝜌 columns of 𝐔, and the 𝜌 rows of 𝐕⊤

corresponding to the 𝜌 largest singular values, you can
form the matrix 𝐀𝜌 = 𝐔𝜌𝚺𝜌𝐕⊤

𝜌 which will be the 𝑏𝑒𝑠𝑡
rank-𝜌 approximation of the original 𝐀 in terms of the
Frobenius norm.

Example: Computing SVD using gradients - The Netflix Challenge

• There are many standard ways of computing the SVD:

– e.g. ‘Power iteration’, or ‘Arnoldi iteration’ or ‘Lanczos al-
gorithm’ coupled with the ‘Gram-Schmidt process’ for or-
thonormalisation

• but, these don’t necessarily scale up to really big problems

– e.g. computing the SVD of a sparse matrix with 17770 rows,
480189 columns and 100480507 non-zero entries!

– this corresponds to the data provided by Netflix when they
launched the Netflix Challenge in 2006.

• OK, so what can you do?

– The ‘Simon Funk’ solution: realise that there is a really sim-
ple (and quick) way to compute the SVD by following gra-
dients...

Example: Computing SVD using gradients - The Netflix Challenge
Deriving a gradient-descent solution to SVD

• One of the definitions of rank-𝜌 SVD of a matrix 𝐀 is that it
minimises reconstruction error in terms of the Frobenius norm.

• Without loss of generality we can write SVD as a 2-matrix
decomposition 𝐀 = �̂��̂�𝑇 by rolling in the square roots of 𝚺 to
both �̂� and �̂�: �̂� = 𝐔𝚺0.5 and �̂�⊤ = 𝚺0.5𝐕⊤.

• Then we can define the decomposition as finding min
�̂�,�̂�

(‖𝐀 −

�̂��̂�⊤‖2
F)
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Example: Computing SVD using gradients - The Netflix Challenge
Deriving a gradient-descent solution to SVD

Start by expanding our optimisation problem:

min
�̂�,�̂�

(‖𝐀 − �̂��̂�⊤‖2
F) = min

�̂�,�̂�
(∑

𝑟
∑

𝑐
(𝐴𝑟𝑐 − �̂�𝑟�̂�𝑐)2)

= min
�̂�,�̂�

(∑
𝑟

∑
𝑐
(𝐴𝑟𝑐 −

𝜌

∑
𝑝=1

�̂�𝑟𝑝�̂�𝑐𝑝)2)

Let 𝑒𝑟𝑐 = 𝐴𝑟𝑐−∑𝜌
𝑝=0 �̂�𝑟𝑝�̂�𝑐𝑝 denote the error. Then, our problem

becomes:

Minimise 𝐽 = ∑
𝑟

∑
𝑐

𝑒2
𝑟𝑐

We can then differentiate with respect to specific variables
�̂�𝑟𝑞 and �̂�𝑐𝑞

Example: Computing SVD using gradients - The Netflix Challenge
Deriving a gradient-descent solution to SVD

We can then differentiate with respect to specific variables
�̂�𝑟𝑞 and �̂�𝑐𝑞:

𝜕𝐽
𝜕�̂�𝑟𝑞

= ∑
𝑟

∑
𝑐

2𝑒𝑟𝑐
𝜕𝑒

𝜕�̂�𝑟𝑞
= −2∑

𝑟
∑

𝑐
�̂�𝑐𝑞𝑒

𝜕𝐽
𝜕�̂�𝑐𝑞

= ∑
𝑟

∑
𝑐

2𝑒𝑟𝑐
𝜕𝑒

𝜕�̂�𝑐𝑞
= −2∑

𝑟
∑

𝑐
�̂�𝑟𝑞𝑒

and use this as the basis for a gradient descent algorithm:

�̂�𝑟𝑞 ⇐ �̂�𝑟𝑞 + 𝜆∑
𝑟

∑
𝑐

�̂�𝑐𝑞𝑒𝑟𝑐

�̂�𝑐𝑞 ⇐ �̂�𝑐𝑞 + 𝜆∑
𝑟

∑
𝑐

�̂�𝑟𝑞𝑒𝑟𝑐

Example: Computing SVD using gradients - The Netflix Challenge
Deriving a gradient-descent solution to SVD
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• A stochastic version of this algorithm (updates on one single
item of 𝐀 at a time) helped win the Netflix Challenge competi-
tion in 2009.

• It was both fast and memory efficient
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4. Perceptrons, MLPs and
Backpropagation

Topics

• A quick look at an MLP again

• The chain rule (again)

• Uninititive gradient effects

• A closer look at basic stochastic gradient descent algorithms

The unbiased Multilayer Perceptron (again)...

i
i
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𝑥1

𝑥2

𝑥3

𝑥4

ℎ1

ℎ2

ℎ3

ℎ4

ℎ5

𝑜1 ̂𝑦1

𝑜2 ̂𝑦2

𝑤(1)
𝑗𝑖

𝑤(2)
𝑘𝑗

Hidden
layer

Input
layer

Output
layer

Without loss of generality, we can write the above as:

�̂� = 𝑔(𝑓 (𝐱;𝐖(1));𝐖(2)) = 𝑔(𝐖(2)𝑓 (𝐖(1)𝐱))

where 𝑓 and 𝑔 are activation functions.
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Gradients of our simple unbiased MLP

• Let’s assume MSE Loss

ℓ𝑀𝑆𝐸(�̂�, 𝐲) = ‖�̂� − 𝐲‖2
2

• What are the gradients?

∇𝐖∗ℓ𝑀𝑆𝐸(𝑔(𝐖(2)𝑓 (𝐖(1)𝐱)), 𝐲)

• Clearly we need to apply the chain rule (vector form) multiple
times

• We could do this by hand

• (But we’re not that crazy!)

Let’s go back to a simpler expression

𝑓 (𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦)𝑧
≡ 𝑞𝑧 where 𝑞 = (𝑥 + 𝑦)

Clearly the partial derivatives of the subexpressions are trivial:

𝜕𝑓 /𝜕𝑧 = 𝑞 𝜕𝑓 /𝜕𝑞 = 𝑧
𝜕𝑞/𝜕𝑥 = 1 𝜕𝑞/𝜕𝑦 = 1

and the chain rule tells us how to combine these:

𝜕𝑓 /𝜕𝑥 = 𝜕𝑓 /𝜕𝑞 ⋅ 𝜕𝑞/𝜕𝑥 = 𝑧
𝜕𝑓 /𝜕𝑦 = 𝜕𝑓 /𝜕𝑞 ⋅ 𝜕𝑞/𝜕𝑦 = 𝑧

so ∇[𝑥,𝑦,𝑧]𝑓 = [𝑧, 𝑧, 𝑞]

A computational graph perspective

𝑓 (𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦)𝑧
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An intuition of the chain rule

• Notice how every operation in the computational graph given
its inputs can immediately compute two things:

1. its output value
2. the local gradient of its inputs with respect to its output

value

• The chain rule tells us literally that each operation should take
its local gradients and multiply them by the gradient that flows
backwards into it

This is backpropagation

• The backprop algorithm is just the idea that you can perform
the forward pass (computing and caching the local gradients
as you go),

• and then perform a backward pass to compute the total gradi-
ent by applying the chain rule and re-utilising the cached local
gradients

• Backprop is just another name for ‘Reverse Mode Automatic
Differentiation’...

Unintuitive effects I: Multiplication

• Consider the multiplication operation 𝑓 (𝑎, 𝑏) = 𝑎 ∗ 𝑏.

• The gradients are clearly 𝜕𝑓 /𝜕𝑏 = 𝑎 and 𝜕𝑓 /𝜕𝑎 = 𝑏.

– (in a computational graph these would be the local gradients
w.r.t the inputs)

• If 𝑎 is large and 𝑏 is tiny the gradient assigned to 𝑏 will be large,
and the gradient to 𝑎 small.

• This has implications for e.g. linear classifiers (𝐰⊤𝐱𝑖) where
you perform many multiplications

– the magnitude of the gradient is directly proportional to the
magnitude of the data

– multiply 𝐱𝑖 by 1000, and the gradients also increase by 1000
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– if you don’t lower the learning rate to compensate your
model might not learn

– Hence you need to always pay attention to data normalisa-
tion!

Unintuitive effects II: vanishing gradients of the sigmoid

• It used to be popular to use sigmoids (or tanh) in the hidden
layers...

• Gradient of 𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

• Thus as part of a larger network where this is the local gradient,
if 𝑥 is large (+ve or -ve), then all gradients backwards from
this point will be zero due to multiplication of the chain rule

– Why might 𝑥 be large?

• Maximum gradient is achievedwhen 𝑥 = 0 (𝜎(𝑥) = 0.5, 𝑑𝑥 =
0.25)

– This means that the maximum gradient that can flow out of
a sigmoid will be a quarter of the input gradient
∗ What’s the implication of this in a deep network with

sigmoid activations?

Unintuitive effects III: dying ReLUs

• Modern networks tend to use ReLUs

• Gradient is 1 for 𝑥 > 0 and 0 otherwise

• Consider ReLU(𝐰⊤𝐱)

– What happens if 𝐰 is initialised badly?
– What happens if𝐰 receives an update thatmeans that𝐰⊤𝐱 <

0 ∀ 𝐱?

• These are dead ReLUs - ones that never fire for all training data

– Sometimes you can find that you have a large fraction of
these

– if you get them from the beginning, check weight initialisa-
tion and data normalisation

– if they’re appearing during training, maybe 𝜂 is too big?
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Unintuitive effects IV: Exploding gradients in recurrent networks

• Recurrent networks apply a function recursively for some num-
ber of timesteps

• Often this recursion involves a multiplication at each timestep,
the gradients of which are all multiplied together because of
the chain rule...

• Consider 𝑧 = 𝑎∏∞
𝑛 𝑏

– 𝑧 → 0 𝑖𝑓 |𝑏| < 1
– 𝑧 → ∞ 𝑖𝑓 |𝑏| > 1

• Same thing happens in the backward pass of an RNN (al-
though with matrices rather than scalars, so the reasoning
applies to the largest eigenvalue)
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5. Automatic Differentiation

What is Automatic Differentiation (AD)?

To solve optimisation problems using gradient methods we
need to compute the gradients (derivatives) of the objective with
respect to the parameters.

• In neural nets we’re talking about the gradients of the loss
function, ℒ with respect to the parameters 𝛉: ∇𝛉ℒ = 𝜕ℒ

𝜕𝛉

• AD is important - it’s been suggested that “Differentiable pro-
gramming” could be the term that ultimately replaces deep
learning1.

What is Automatic Differentiation (AD)?
Computing Derivatives

There are three ways to compute derivatives:

• Symbolically differentiate the function with respect to its pa-
rameters

– by hand
– using a CAS

• Make estimates using finite differences

• Use Automatic Differentiation

Problems
Static - can’t “differentiate algorithms”

Problems
Numerical errors - will compound in deep nets

1http://forums.fast.ai/t/differentiable-programming-is-this-why-we-switched-to-pytorch/
9589/5

http://forums.fast.ai/t/differentiable-programming-is-this-why-we-switched-to-pytorch/9589/5
http://forums.fast.ai/t/differentiable-programming-is-this-why-we-switched-to-pytorch/9589/5
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What is Automatic Differentiation (AD)?

Automatic Differentiation is:

• a method to get exact derivatives efficiently, by storing informa-
tion as you go forward that you can reuse as you go backwards.

– Takes code that computes a function and uses that to com-
pute the derivative of that function.

– The goal isn’t to obtain closed-form solutions, but to be able
to write a program that efficiently computes the derivatives.

Lets think about differentiation and programming

[
Math] 𝑥 = ?

𝑦 = ?
𝑎 = 𝑥 𝑦
𝑏 = sin(𝑥)
𝑧 = 𝑎 + 𝑏

[
Code]

1 x = ?
2 y = ?
3 a = x * y
4 b = sin(x)
5 z = a + b
6

The Chain Rule of Differentiation

Recall the chain rule for a variable/function 𝑧 that depends
on 𝑦 which depends on 𝑥:

𝑑𝑧
𝑑𝑥 =

𝑑𝑧
𝑑𝑦

𝑑𝑦
𝑑𝑥

In general, the chain rule can be expressed as:

𝜕𝑤
𝜕𝑡 =

𝑁
∑

𝑖

𝜕𝑤
𝜕𝑢𝑖

𝜕𝑢𝑖
𝜕𝑡 =

𝜕𝑤
𝜕𝑢1

𝜕𝑢1
𝜕𝑡 +

𝜕𝑤
𝜕𝑢2

𝜕𝑢2
𝜕𝑡 + ⋯+

𝜕𝑤
𝜕𝑢𝑁

𝜕𝑢𝑁
𝜕𝑡

where 𝑤 is some output variable, and 𝑢𝑖 denotes each input vari-
able 𝑤 depends on.
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Applying the Chain Rule

Let’s differentiate our previous expression with respect to
some yet to be given variable 𝑡:

Expression

𝑥 = ?
𝑦 = ?
𝑎 = 𝑥 𝑦
𝑏 = sin(𝑥)
𝑧 = 𝑎 + 𝑏

𝜕𝑥
𝜕𝑡 = ?

𝜕𝑦
𝜕𝑡 = ?

𝜕𝑎
𝜕𝑡 = 𝑥

𝜕𝑦
𝜕𝑡 + 𝑦

𝜕𝑥
𝜕𝑡

𝜕𝑏
𝜕𝑡 = cos(𝑥)

𝜕𝑥
𝜕𝑡

𝜕𝑧
𝜕𝑡 =

𝜕𝑎
𝜕𝑡 +

𝜕𝑏
𝜕𝑡

If we substitute 𝑡 = 𝑥 in the above we’ll have an algorithm for
computing 𝜕𝑧/𝜕𝑥. To get 𝜕𝑧/𝜕𝑦 we’d just substitute 𝑡 = 𝑦.

Translating to code I

We could translate the previous expressions back into a pro-
gram involving differential variables {dx, dy, ...} which repre-
sent 𝜕𝑥/𝜕𝑡, 𝜕𝑦/𝜕𝑡,… respectively:

1 dx = ?
2 dy = ?
3 da = y * dx + x * dy
4 db = cos(x) * dx
5 dz = da + db

What happens to this program if we substitute 𝑡 = 𝑥 into the
math expression?

67



i
i

“output” — 2023/1/28 — 11:33 — page 68 — #87 i
i

i
i

i
i

Translating to code II

1 dx = 1
2 dy = 0
3 da = y * dx + x * dy
4 db = cos(x) * dx
5 dz = da + db

The effect is remarkably simple: to compute 𝜕𝑧/𝜕𝑥 we just
seed the algorithm with dx=1 and dy=0.

Translating to code III

1 dx = 0
2 dy = 1
3 da = y * dx + x * dy
4 db = cos(x) * dx
5 dz = da + db

To compute 𝜕𝑧/𝜕𝑦 we just seed the algorithm with dx=0 and
dy=1.

Making Rules

• We’ve successfully computed the gradients for a specific func-
tion, but the process was far from automatic.

• We need to formalise a set of rules for translating a program
that evaluates an expression into a program that evaluates its
derivatives.

• We have actually already discovered 3 of these rules:
1 c = a + b => dc = da + db
2 c = a * b => dc = b * da + a * db
3 c = sin(a) => dc = cos(a) * da

More rules

These initial rules:
1 c=a+b => dc=da+db
2 c=a*b => dc=b*da+a*db
3 c=sin(a) => dc=cos(a)*da

can easily be extended further using multivariable calculus:
1 c=a-b => dc=da-db
2 c=a/b => dc=da/b-a*db/b**2
3 c=a**b => dc=b*a**(b-1)*da+log(a)*a**b*db
4 c=cos(a) => dc=-sin(a)*da
5 c=tan(a) => dc=da/cos(a)**2
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Forward Mode AD

• To translate using the rules we simply replace each primitive
operation in the original program by its differential analogue.

• The order of computation remains unchanged: if a statement
𝐾 is evaluated before another statement 𝐿, then the differential
analogue of 𝐾 is evaluated before the analogue statement of 𝐿.

• This is Forward-mode Automatic Differentiation.

Interleaving differential computation

A careful analysis of our original program and its differential
analogue shows that its possible to interleave the differential
calculations with the original ones:

1 x = ?
2 dx = ?
3
4 y = ?
5 dy = ?
6
7 a = x * y
8 da = y * dx + x * dy
9

10 b = sin(x)
11 db = cos(x) * dx
12
13 z = a + b
14 dz = da + db

Dual Numbers

• This implies that we can keep track of the value and gradient
at the same time.

• We can use a mathematical concept called a “Dual Number”
to create a very simple direct implementation of AD.

Reverse Mode AD

• Whilst Forward-mode AD is easy to implement, it comes with
a very big disadvantage…

• For every variable we wish to compute the gradient with
respect to, we have to run the complete program again.
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• This is obviously going to be a problem if we’re talking about
the gradients of a function with very many parameters (e.g. a
deep network).

• A solution is Reverse Mode Automatic Differentiation.

Reversing the Chain Rule

The chain rule is symmetric — this means we can turn the
derivatives upside-down:

𝜕𝑠
𝜕𝑢 =

𝑁
∑

𝑖

𝜕𝑤𝑖
𝜕𝑢

𝜕𝑠
𝜕𝑤𝑖

=
𝜕𝑤1
𝜕𝑢

𝜕𝑠
𝜕𝑤1

+
𝜕𝑤2
𝜕𝑢

𝜕𝑠
𝜕𝑤2

+⋯+
𝜕𝑤𝑁
𝜕𝑢

𝜕𝑠
𝜕𝑤𝑁

In doing so, we have inverted the input-output role of the vari-
ables: 𝑢 is some input variable, the 𝑤𝑖’s are the output variables
that depend on 𝑢. 𝑠 is the yet-to-be-given variable. [1em] In
this form, the chain rule can be applied repeatedly to every input
variable 𝑢 (akin to how in forward mode we repeatedly applied
it to every 𝑤). Therefore, given some 𝑠 we expect this form of the
rule to give us a program to compute both 𝜕𝑠/𝜕𝑥 and 𝜕𝑠/𝜕𝑦 in
one go…

Reversing the chain rule: Example

𝜕𝑠
𝜕𝑢 =

𝑁
∑

𝑖

𝜕𝑤𝑖
𝜕𝑢

𝜕𝑠
𝜕𝑤𝑖

𝑥 = ?
𝑦 = ?
𝑎 = 𝑥 𝑦
𝑏 = sin(𝑥)
𝑧 = 𝑎 + 𝑏
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𝜕𝑠
𝜕𝑧 = ?

𝜕𝑠
𝜕𝑏 =

𝜕𝑧
𝜕𝑏

𝜕𝑠
𝜕𝑧 =

𝜕𝑠
𝜕𝑧

𝜕𝑠
𝜕𝑎 =

𝜕𝑧
𝜕𝑎

𝜕𝑠
𝜕𝑧 =

𝜕𝑠
𝜕𝑧

𝜕𝑠
𝜕𝑦 =

𝜕𝑎
𝜕𝑦

𝜕𝑠
𝜕𝑎 = 𝑥

𝜕𝑠
𝜕𝑎

𝜕𝑠
𝜕𝑥 =

𝜕𝑎
𝜕𝑥

𝜕𝑠
𝜕𝑎 +

𝜕𝑏
𝜕𝑥

𝜕𝑠
𝜕𝑏

= 𝑦
𝜕𝑠
𝜕𝑎 + cos(𝑥)

𝜕𝑠
𝜕𝑏

= (𝑦 + cos(𝑥))
𝜕𝑠
𝜕𝑧

Visualising dependencies

Differentiating in reverse can be quite mind-bending: instead
of asking what input variables an output depends on, we have to
ask what output variables a given input variable can affect. [1em]
We can see this visually by drawing a dependency graph of the
expression: [1em]i

i
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𝑧
+

𝑏
sin

𝑎
⋅

𝑥 𝑦

Translating to code

Let’s now translate our derivatives into code. As before we
replace the derivatives (𝜕𝑠/𝜕𝑧, 𝜕𝑠/𝜕𝑏,… ) with variables (gz, gb,

...) which we call adjoint variables:
1 gz = ?
2 gb = gz
3 ga = gz
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4 gy = x * ga
5 gx = y * ga + cos(x) * gb

If we go back to the equations and substitute 𝑠 = 𝑧 we would
obtain the gradient in the last two equations. In the above pro-
gram, this is equivalent to setting gz = 1. [1em] This means to
get the both gradients 𝜕𝑧/𝜕𝑥 and 𝜕𝑧/𝜕𝑦 we only need to run the
program once!

Limitations of Reverse Mode AD

• If we have multiple output variables, we’d have to run the
program for each one (with different seeds on the output vari-
ables)2. For example:

⎧{
⎨{⎩

𝑧 = 2𝑥 + sin 𝑥
𝑣 = 4𝑥 + cos 𝑥

• We can’t just interleave the derivative calculations (since they
all appear to be in reverse)…How can we make this automatic?

Implementing Reverse Mode AD

There are two ways to implement Reverse AD:

• We can parse the original program and generate the adjoint
program that calculates the derivatives.

– Potentially hard to do.

– Static, so can only be used to differentiate algorithms that
have parameters predefined.

– But, efficient (lots of opportunities for optimisation)

• We can make a dynamic implementation by constructing a
graph that represents the original expression as the program
runs.

Constructing an expression graph

The goal is to get something akin to the graph we saw earlier:

2there are ways to avoid this limitation…
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The “roots” of the graph are the independent variables x and
y. Constructing these nodes is as simple as creating an object:

1 class Var:
2 def __init__(self, value):
3 self.value = value
4 self.children = []
5 ...
6 ...
7
8 x = Var(0.5)
9 y = Var(4.2)

Each Var node can have children which are the nodes that
depend directly on that node. The children allow nodes to link
together in a Directed Acyclic Graph.

Building expressions

By default, nodes do not have any children. As expressions
are created each expression 𝑢 registers itself as a child of each of
its dependencies 𝑤𝑖 together with its weight 𝜕𝑤𝑖/𝜕𝑢 which will
be used to compute gradients:

1 class Var:
2 ...
3 def __mul__(self, other):
4 z = Var(self.value * other.value)
5
6 # weight = dz/dself = other.value
7 self.children.append((other.value, z))
8
9 # weight = dz/dother = self.value

10 other.children.append((self.value, z))
11 return z
12 ...
13 ...
14 # "a" is a new Var that is a child of both x and y
15 a = x * y

Computing gradients

Finally, to get the gradients we need to propagate the deriva-
tives. To avoid unnecessarily traversing the tree multiple times
we will cache the derivative of a node in an attribute grad_value:
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1 class Var:
2 def __init__(self):
3 ...
4 self.grad_value = None
5
6 def grad(self):
7 if self.grad_value is None:
8 # calculate derivative using chain rule
9 self.grad_value = sum(weight * var.grad() for weight

, var in self.children)
10 return self.grad_value
11 ...
12 ...
13 a.grad_value = 1.0
14 print("da/dx = {}".format(x.grad()))

Aside: Optimising Reverse Mode AD

• The Reverse AD approach we’ve outlined is not very space
efficient. One way to get around this is to avoid storing the
children directly and instead store indices in an auxiliary data
structure called a Wengert list or tape.

• Another interesting approach to memory reduction is trade-off
computation for memory of the caches. The Count-Trailing-
Zeros (CTZ) approach does just this3.

• But, in reality memory is relatively cheap if managed well...

AD in the PyTorch autograd package

• PyTorch’s AD is remarkably similar to the one we’ve just built:

– it eschews the use of a tape

– it builds the computation graph as it runs (recording ex-
plicit Function objects as the children of Tensors rather than
grouping everything into Var objects)

– it caches the gradients in the same way we do (in the grad

attribute) - hence the need to call zero_grad() when recom-
puting the gradients of the same graph after a round of
backprop.

3Andreas Griewank (1992) Achieving logarithmic growth of temporal and
spatial complexity in reverse automatic differentiation, Optimization Methods
and Software, 1:1, 35-54, DOI: 10.1080/10556789208805505
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• PyTorch does some clever memory management to work well
in a reference-counted regime and aggressively frees values
that are no longer needed.

• The backend is actually mostly written in C++, so its fast, and
can be multi-threaded (avoids problems of the GIL).

• It allows easy “turning off” of gradient computations through
requires_grad.

• In-place operations which invalidate data needed to compute
derivatives will cause runtime errors, as will variable aliasing...
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6. Optimisation and some
tricks for convergence

Gradient descent and SGD (again), and mini-batch SGD

We’ll start up by looking again at gradient descent algorithms
and their behaviours...

Reminder: Gradient Descent

• Define total loss as ℒ = −∑(𝐱,𝑦)∈𝐃 ℓ(𝑔(𝐱, 𝛉), 𝑦) for some loss
function ℓ, dataset 𝐃 and model 𝑔 with learnable parameters
𝛉.

• Define how many passes over the data to make (each one
known as an Epoch)

• Define a learning rate 𝜂

Gradient Descent updates the parameters 𝛉 by moving them
in the direction of the negative gradient with respect to the total
loss ℒ by the learning rate 𝜂 multiplied by the gradient: [1em]
for each Epoch: 𝛉 ← 𝛉 − 𝜂∇𝛉ℒ

Gradient Descent

• Gradient Descent has good statistical properties (very low
variance)

• But is very data inefficient (particularly when data has many
similarities)

• Doesn’t scale to effectively infinite data (e.g. with augmenta-
tion)
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Reminder: Stochastic Gradient Descent

• Define loss function ℓ, dataset 𝐃 and model 𝑔 with learnable
parameters 𝛉.

• Define how many passes over the data to make (each one
known as an Epoch)

• Define a learning rate 𝜂

Stochastic Gradient Descent updates the parameters 𝛉 bymov-
ing them in the direction of the negative gradient with respect to
the loss of a single item ℓ by the learning rate 𝜂 multiplied by the
gradient: [1em] for each Epoch: for
each (𝐱, 𝑦) ∈ 𝐃: 𝛉 ← 𝛉 − 𝜂∇𝛉ℓ

Stochastic Gradient Descent

• Stochastic Gradient Descent has poor statistical properties
(very high variance)

• But is computationally inefficient (poor utilisation of resources
- particularly with respect to vectorisation)

Mini-batch Stochastic Gradient Descent

• Define a batch size 𝑏

• Define batch loss as ℒ𝑏 = −∑(𝐱,𝑦)∈𝐃𝑏
ℓ(𝑔(𝐱, 𝛉), 𝑦) for some

loss function ℓand model 𝑔 with learnable parameters 𝛉. 𝐃𝑏 is
a subset of dataset 𝐃 of cardinality 𝑏.

• Define how many passes over the data to make (each one
known as an Epoch)

• Define a learning rate 𝜂

Mini-batch Gradient Descent updates the parameters 𝛉 by
moving them in the direction of the negative gradient with re-
spect to the loss of a mini-batch 𝐃𝑏, ℒ𝑏 by the learning rate 𝜂
multiplied by the gradient: [1em] partition the dataset
𝐃 into an array of subsets of size 𝑏 for each Epoch:
for each 𝐃𝑏 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑(𝐃): 𝛉 ← 𝛉 −
𝜂∇𝛉ℒ𝑏
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Mini-batch Stochastic Gradient Descent

• Mini-batch Stochastic Gradient Descent has reasonable statisti-
cal properties (much lower variance than SGD)

• Allows for computationally efficiency (good utilisation of re-
sources)

• Ultimately we would normally want to make our batches as
big as possible for lower variance gradient estimates, but:

– Must still fit in RAM (e.g. on the GPU)

– Must be able to maintain throughput (e.g. pre-processing
on the CPU; data transfer time)

So, what about the learning rate?

• Choice of learning rate is extremely important

• But we have to reason about the ‘loss landscape’

– Most convergence analysis of optimisation algorithms as-
sumes a convex loss landscape

∗ Easy to reason about
∗ Can be shown that (S)GD will converge to the optimal

solution for a variety of learning rates
∗ Can give insights into potential problems in the non-convex

case

– Deep Learning is highly non-convex

∗ Many local minima
∗ Plateaus
∗ Saddle points
∗ Symmetries (permutation, etc)
∗ Certainly no single global minima

*GD in the convex case: failure modes
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Accelerated Gradient Methods

• Accelerated gradient methods use a leaky average of the gra-
dient, rather than the instantaneous gradient estimate at each
time step

• A physical analogywould be one of themomentum a ball picks
up rolling down a hill...

• As you’ll see, this helps address the *GD failure modes, but
also helps avoid getting stuck in local minima

pause

Momentum I

It’s common for the ‘leaky’ average (the ‘velocity’, 𝑣𝑡) to be a
weighted average of the instantaneous gradient 𝑔𝑡 and the past
velocity1:

𝑣𝑡 = 𝛽𝑣𝑡−1 + 𝑔𝑡

where 𝛽 ∈ [0, 1] is the ‘momentum’.

1There are quite a few variants of this; here we’re following the PyTorch variant
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Momentum II

• The momentum method allows to accumulate velocity in di-
rections of low curvature that persist across multiple iterations

• This leads to accelerated progress in low curvature directions
compared to gradient descent

MB-SGD with Momentum

Learning with momentum on iteration 𝑡 (batch at 𝑡 denoted
by 𝑏(𝑡)) is given by:

𝐯𝑡 ← 𝛽𝐯𝑡−1 + ∇𝛉ℒ𝑏(𝑡)

𝛉𝑡 ← 𝛉𝑡−1 − 𝜂𝐯𝑡

Note 𝛽 = 0.9 is a good choice for the momentum parameter.

SGD with Momentum - potentially better convex convergence

Learning rate schedules

• In practice you want to decay your learning rate over time

• Smaller steps will help you get closer to the minima

• But don’t do it to early, else you might get stuck
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• Something of an art form!

– ‘Grad StudentDescent’ or GDGS (‘Gradient Descent byGrad
Student‘)

Reduce LR on plateau

• Common Heuristic approach:

– if the loss hasn’t improved (within some tolerance) for 𝑘
epochs

– then drop the lr by a factor of 10

• Remarkably powerful!

Cyclic learning rates

• Worried about getting stuck in a non-optimal local minima?

• Cycle the learning rate up and down (possibly annealed), with
a different lr on each batch

• See https://arxiv.org/abs/1506.01186

More advanced optimisers

• Adagrad

– Decrease learning rate dynamically per weight.
– Squared magnitude of the gradient (2nd moment) used to

adjust how quickly progress is made - weights with large
gradients are compensated with a smaller learning rate.

– Particularly effective for sparse features.

• RMSProp

– Modifies Adagrad to decouple learning rate from gradient
magnitude scaling

– Incorporates leaky averaging of squared gradient magni-
tudes

– LR would typically follow a predefined schedule

• Adam
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– Essentially takes all the best ideas fromRMSProp and SDG+Mo-
mentum

– Bias corrected momentum and second moment estimation
– Shown that it might still diverge (or be non optimal, even in

convex settings)...
– LR is still a hyperparameter (you might still schedule)

Take-away messages

• The loss landscape of a deep network is complex to understand
(and is far from convex)

• If you’re in a hurry to get results use Adam

• If you have time (or a Grad Student at hand), then use SGD
(with momentum) and work on tuning the learning rate

• If you’re implementing something from a paper, then follow
what they did!

/sectionThe innate biases of optimisation with SGD
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7. Deeper Networks:
Universal approximation,
overfitting and
regularisation

No Free Lunch

• Statistical learning theory claims that a machine can generalise
well from a finite training set.

• This contradicts basic inductive reasoning which says to de-
rive a rule describing every member of a set one must have
information about every member.

• Machine learning avoids this problem by learning probabilis-
tic1 rules which are probably correct about most members of the
set they concern.

• But, no free lunch theorem states that every possible classifica-
tion machine has the same error when averaged over all possible
data-generating distributions.

– No machine learning algorithm is universally better than
any other!

– Fortunately, in the real world, data is generated by a small
subset of generating distributions...

pause

1or perhaps more generally rules which are not certain
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The Universal Approximation Theorem

Let 𝜓 ∶ ℝ → ℝ be a nonconstant, bounded, and continuous
function. Let 𝐼𝑚 denote them-dimensional unit hypercube [0, 1]𝑚.
The space of real-valued continuous functions on 𝐼𝑚 is denoted
by 𝐶(𝐼𝑚). Then, given any 𝜀 > 0 and any function 𝑓 ∈ 𝐶(𝐼𝑚),
there exist an integer 𝑁, real constants 𝑣𝑖, 𝑏𝑖 ∈ ℝ and real vectors
𝑤𝑖 ∈ ℝ𝑚 for 𝑖 = 1,… ,𝑁, such that we may define:

𝐹(𝑥) = ∑𝑁
𝑖=1 𝑣𝑖𝜓(𝑤𝑇

𝑖 𝑥 + 𝑏𝑖) as an approximate realization of
the function 𝑓 ; that is,

|𝐹(𝑥)−𝑓 (𝑥)| < 𝜀 ∀ 𝑥 ∈ 𝐼𝑚. [1em] ⟹ simple neural networks
can represent a wide variety of interesting functions when given
appropriate parameters.

So a single hidden layer network can approximate most functions?

• Yes!

• But, ...

– to get the precision you require (small 𝜀), you might need a
really large number of hidden units (very large 𝑁).

– worse-case analysis shows it might be exponential (possibly
one hidden unit for every input configuration)

– We’ve not said anything about learnability...
∗ The optimiser might not find a good solution2.
∗ The training algorithm might just choose the wrong solu-

tion as a result of overfitting.
∗ There is no known universal procedure for examining a set of

examples and choosing a function that will generalise to points
out of the training set.

Then Why Go Deep?

• There are functions you can compute with a deep neural net-
work that shallow networks require exponentiallymore hidden
units to compute.
2note that it has been shown that the gradients of the function are approxi-

mated by the network to an arbitrary precision
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– The following function is more efficient to implement using
a deep neural network: 𝑦 = 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕⋯⊕ 𝑥𝑛

• We should care about the data generating distribution (c.f.
NFL).

– Real-world data has significant structure; often believed to
be generated by (relatively) simple low-dimensional latent
processes.

– Implies a prior belief that the underlying factors of variation
in data can be explained by a hierarchical composition of
increasingly simple latent factors

• Alternatively, one could just consider that a deep architecture
just expresses that the function we wish to learn is a program
made of multiple steps where each step makes use of the pre-
vious steps outputs.

• Empirically, deeper networks just seem to generalise better!

What are the problems?

• Learnability is still hard

– Problems of gradient flow
– Horrible symmetries in the loss landscape
– Overfitting

pause

Vanishing and Exploding Gradients

• The vanishing and exploding gradient problem is a difficulty
found in training NN with gradient-based learning methods
and backpropagation.

• In training, the gradient may become vanishingly small (or
large), effectively preventing the weight from changing its
value (or exploding in value).

• This leads to the neural network not being able to train.

• This issue affects many-layered networks (feed-forward), as
well as recurrent networks.
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• In principle, optimisers that rescale the gradients of eachweight
should be able to deal with this issue (as long as numeric pre-
cision doesn’t become problematic).

pause

Issues with Going Deep

Jw4w3w2w1

b1 b2 b3 b4

pause

Residual Connections

• One of themost effective ways to resolve diminishing gradients
is with residual neural networks (ResNets)3.

• ResNets are artificial neural networks that use skip connections
to jump over layers.

• The vanishing gradient problem is mitigated in ResNets by
reusing activations from a previous layer.

• Is this the full story though? Skip connections also break sym-
metries, which could be much more important...

pause

3K. He, X. Zhang, S. Ren and J. Sun, ”Deep Residual Learning for Image
Recognition,” CVPR, Las Vegas, NV, 2016, pp. 770-778.
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Residual Connections

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x) x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2
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Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
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Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that
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Figure 6. Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error. Left: plain networks. The error
of plain-110 is higher than 60% and not displayed. Middle: ResNets. Right: ResNets with 110 and 1202 layers.
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Figure 7. Standard deviations (std) of layer responses on CIFAR-
10. The responses are the outputs of each 3⇥3 layer, after BN and
before nonlinearity. Top: the layers are shown in their original
order. Bottom: the responses are ranked in descending order.

networks such as FitNet [35] and Highway [42] (Table 6),
yet is among the state-of-the-art results (6.43%, Table 6).

Analysis of Layer Responses. Fig. 7 shows the standard
deviations (std) of the layer responses. The responses are
the outputs of each 3⇥3 layer, after BN and before other
nonlinearity (ReLU/addition). For ResNets, this analy-
sis reveals the response strength of the residual functions.
Fig. 7 shows that ResNets have generally smaller responses
than their plain counterparts. These results support our ba-
sic motivation (Sec.3.1) that the residual functions might
be generally closer to zero than the non-residual functions.
We also notice that the deeper ResNet has smaller magni-
tudes of responses, as evidenced by the comparisons among
ResNet-20, 56, and 110 in Fig. 7. When there are more
layers, an individual layer of ResNets tends to modify the
signal less.

Exploring Over 1000 layers. We explore an aggressively
deep model of over 1000 layers. We set n = 200 that
leads to a 1202-layer network, which is trained as described
above. Our method shows no optimization difficulty, and
this 103-layer network is able to achieve training error
<0.1% (Fig. 6, right). Its test error is still fairly good
(7.93%, Table 6).

But there are still open problems on such aggressively
deep models. The testing result of this 1202-layer network
is worse than that of our 110-layer network, although both

training data 07+12 07++12
test data VOC 07 test VOC 12 test
VGG-16 73.2 70.4

ResNet-101 76.4 73.8

Table 7. Object detection mAP (%) on the PASCAL VOC
2007/2012 test sets using baseline Faster R-CNN. See also Ta-
ble 10 and 11 for better results.

metric mAP@.5 mAP@[.5, .95]
VGG-16 41.5 21.2

ResNet-101 48.4 27.2

Table 8. Object detection mAP (%) on the COCO validation set
using baseline Faster R-CNN. See also Table 9 for better results.

have similar training error. We argue that this is because of
overfitting. The 1202-layer network may be unnecessarily
large (19.4M) for this small dataset. Strong regularization
such as maxout [10] or dropout [14] is applied to obtain the
best results ([10, 25, 24, 35]) on this dataset. In this paper,
we use no maxout/dropout and just simply impose regular-
ization via deep and thin architectures by design, without
distracting from the focus on the difficulties of optimiza-
tion. But combining with stronger regularization may im-
prove results, which we will study in the future.

4.3. Object Detection on PASCAL and MS COCO

Our method has good generalization performance on
other recognition tasks. Table 7 and 8 show the object de-
tection baseline results on PASCAL VOC 2007 and 2012
[5] and COCO [26]. We adopt Faster R-CNN [32] as the de-
tection method. Here we are interested in the improvements
of replacing VGG-16 [41] with ResNet-101. The detection
implementation (see appendix) of using both models is the
same, so the gains can only be attributed to better networks.
Most remarkably, on the challenging COCO dataset we ob-
tain a 6.0% increase in COCO’s standard metric (mAP@[.5,
.95]), which is a 28% relative improvement. This gain is
solely due to the learned representations.

Based on deep residual nets, we won the 1st places in
several tracks in ILSVRC & COCO 2015 competitions: Im-
ageNet detection, ImageNet localization, COCO detection,
and COCO segmentation. The details are in the appendix.

8

Overfitting

• Neural networks with a large number of parameters (and hid-
den layers) are powerful, however, overfitting is a serious prob-
lem in such systems.

• Just as you’ve seen in simple machines (e.g. Ridge Regression
and LASSO), regularisation can help mitigate overfitting

• In deep networks, we might:

– Use the architecture to regularise (e.g. ConvNets)
– Use weight regularisers (L1, L2 [weight decay], etc, ...)
– Use a stochastic weight regulariser (like dropout)
– Regularise by smoothing the optimisation landscape (e.g.

Batch Normalisation)

pause

Dropout

• Dropout is a form of regularisation

• The key idea in dropout is to randomlydrop neurons, including
all of the connections, from the neural network during training.

• Motivation: the best way to regularise a fixed size model is
to average predictions over all possible parameter settings,
weighting each setting by the posterior probability given the
training data.

– Clearly this isn’t actually tractable - dropout is an approxi-
mation of this idea.

K. He, X. Zhang, S. Ren and J. Sun, ”Deep Residual Learning for Image
Recognition,” CVPR, Las Vegas, NV, 2016, pp. 770-778.
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– The idea of averaging predictions to resolve the bias-variance
dilemma is called ensembling.

Dropout

pause

How Does Dropout Work?

• In the learning phase, we set a dropout probability for each
layer in the network.

• For each batchwe then randomly decidewhether or not a given
neuron in a given layer is removed.

pause

How is Dropout implemented?

• We define a random binary mask 𝑚(𝑙) which is used to remove
neurons, and note, 𝑚(𝑙) changes for each iteration of the back-
propagation algorithm.

• For layers, 𝑙 = 1 to 𝐿 − 1, for the forward pass of backpropaga-
tion, we then compute

𝑎(𝑙) = 𝜎(𝑤(𝑙)𝑎(𝑙−1) + 𝑏(𝑙)) ⊙ 𝑚(𝑙) (7.1)

Image from: https://www.researchgate.net/figure/Dropout-neural-network-model-a-is-a-standard-neural-network-b-is-the-same-network_
fig3_309206911
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• For layer 𝐿,
𝑎(𝐿) = 𝜎(𝑤(𝐿)𝑎(𝐿−1) + 𝑏(𝑙)) (7.2)

• For the backward pass of the backpropagation algorithm,

𝛿𝐿 = 𝛥𝑎𝐽 ⊙ 𝜎 ′(𝑧𝐿) (7.3)

𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1) ⊙ 𝜎 ′(𝑧𝑙) ⊙ 𝑚(𝑙) (7.4)

pause

Why Does Dropout Work?

• Neurons cannot co-adapt to other units (they cannot assume
that all of the other units will be present)

• By breaking co-adaptation, each unit will ultimately find more
general features
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8. Embeddings and
distributed representations
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9. Function
reparameterisations and
relaxations

What are differentiable relaxations and reparameterisations?

• We’ve seen that we can build arbitrary computational graphs
from a variety of building blocks

• But, those blocks need to be differentiable to work in our opti-
misation framework

– More specifically they need to be continuous and differentiable
almost everywhere.

• That limits what we can do... Can we work around that?

– Relaxations — make continuous (and potentially differen-
tiable everywhere) approximations.

– Reparameterisations— rewrite functions to factor out stochas-
tic variables from the parameters.

Aside: continuity and differentiable almost everywhere

• Consider the ReLU function 𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥)

– ReLU is continuous
∗ it does not have any abrupt changes in value
∗ small changes in 𝑥 result in small changes to 𝑓 (𝑥) every-

where in the domain of 𝑥
– ReLU is differentiable almost everywhere

∗ No gradient at 𝑥 = 0; only left and right gradients at that
point
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∗ There are subgradients at 𝑥 = 0; implementations usually
just arbitrarily pick 𝑓 ′(0) = 0

• Functions that are differentiable almost everywhere or have
subgradients tend to be compatiblewith gradient descentmeth-
ods

– We expect that the loss landscape is different for each batch
& that we’ll never actually reach aminima, andwe only need
to mostly take steps in the right direction.

Relaxing ReLU

• Softplus (softplus(𝑥) = ln(1+𝑒𝑥)) is a relaxation of ReLU that
is differentiable everywhere.

• Its derivative is the Sigmoid function

• Not widely used; counter-intuitively, even though it neither sat-
urates completely and is differentiable everywhere, empirically
it has been shown that ReLU works better.i

i
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Interpretations of softmax

• Up until now we’ve really considered softmax as a generalisa-
tion of sigmoid (which represents a probability distribution
over a binary variable) to many output categories.

– softmax transforms a vector of logits into a probability dis-
tribution over categories.

• As you might guess from the name, softmax is a relaxation...

– but not of the max function like the name would suggest!
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– softmax can be viewed as a continuous and differentiable
relaxation of the argmax function with one-hot output en-
coding.

– The argmax function is not continuous or differentiable;
softmax provides an approximation:

𝐱 = [ 1.1 4.0 -0.1 2.3 ]
argmax(𝐱) = [ 0 1 0 0 ]
softmax(𝐱) = [ 0.044 0.797 0.013 0.146 ]

The Softmax function with temperature

Consider what happens if you were to divide the input logits
to a softmax by a scalar temperature parameter 𝑇.

softmax(𝐱/𝑇)𝑖 =
𝑒𝑥𝑖/𝑇

∑𝐾
𝑗=1 𝑒𝑥𝑗/𝑇 ∀𝑖 = 1, 2,… , 𝐾

argmax — softmax with temperature

𝐱 = [ 1.1 4.0 -0.1 2.3 ]
softmax(𝐱/1.0) = [ 0.044 0.797 0.013 0.146 ]
softmax(𝐱/0.8) = [ 0.023 0.868 0.005 0.104 ]
softmax(𝐱/0.6) = [ 0.008 0.937 0.001 0.055 ]
softmax(𝐱/0.4) = [ 6.997e-04 9.852e-01 3.484e-05 1.405e-02 ]
softmax(𝐱/0.2) = [ 5.042e-07 9.998e-01 1.250e-09 2.034e-04 ]
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argmax — scalar approximation

• What if you want to get a scalar approximation to the index of
the argmax rather than a probability distribution approximat-
ing the one-hot form?

– Caveat: we are not actually going get a guaranteed integer
representation as that would be non-differentiable; we’ll
have to live with a float that is an approximation1.

• First, consider how to convert a one-hot vector to index repre-
sentation in a differentiable manner: [0, 0, 1, 0] → 2

– Just dot product with a vector of indices: [0, 1, 2, 3]

• The same process can be applied to the softmax distribution

– As temperature𝑇 → 0, softmax(𝐱/𝑇)⋅[0, 1,… ,𝑁] → argmax(𝐱)
for 𝐱 ∈ ℝ𝑁.

argmax — scalar approximation

𝐱 = [ 1.1 4.0 −0.1 2.3 ]⊤

𝐢 = [ 0.0 1.0 2.0 3.0 ]⊤

softmax(𝐱/1.0)⊤𝐢 = 1.2606
softmax(𝐱/0.8)⊤𝐢 = 1.1894
softmax(𝐱/0.6)⊤𝐢 = 1.1037
softmax(𝐱/0.4)⊤𝐢 = 1.0274
softmax(𝐱/0.2)⊤𝐢 = 1.0004

max

• A similar trick applies to finding the maximum value of a
vector:

– Use softmax(𝐱) as an approximate one-hot argmax, and dot
product with the vector 𝐱.

– As temperature 𝑇 → 0, softmax(𝐱/𝑇)⊤𝐱 → max(𝐱).
1for now — we’ll address this in a few slides time!
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𝐱 = [ 1.1 4.0 −0.1 2.3 ]⊤

softmax(𝐱/1.0)⊤𝐱 = 3.571
softmax(𝐱/0.8)⊤𝐱 = 3.736
softmax(𝐱/0.6)⊤𝐱 = 3.881
softmax(𝐱/0.4)⊤𝐱 = 3.974
softmax(𝐱/0.2)⊤𝐱 = 3.999

L1 norm

• L1 norm is the sum of absolute values of a vector

• We’ve seen that an L1 norm regulariser can induce sparsity in
a model

• abs is continuous and differentiable almost everywhere, but...

• unlike ReLU, the gradients left and right of the discontinuity
point in equal and opposite directions

– This can cause oscillations that prevent or hamper learning

i
i
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Relaxing the L1 norm

• Huber loss (aka Smooth L1 loss) relaxes L1 by mixing it with
L2 near the origin:

𝑧𝑖 =
⎧{
⎨{⎩

0.5(𝑥𝑖 − 𝑦𝑖)2, if |𝑥𝑖 − 𝑦𝑖| < 1
|𝑥𝑖 − 𝑦𝑖| − 0.5, otherwise
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• In both cases gradients reduce in magnitude and switch direc-
tion smoothly which can lead to much less oscillation.i

i
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Backpropagation through random operations

• Up until now all the models we’ve considered have performed
deterministic transformations of input variables 𝐱.

• What if we want to build a model that performs a stochastic
transformation of 𝐱?

• A simpleway to do this is to augment the input 𝐱with a random
vector 𝐳 sampled from some distribution

– The network would learn a function 𝑓 (𝐱, 𝐳) that is internally
deterministic, but appears stochastic to an observer that does
not have access to 𝐳.

– provided that 𝑓 is continuous and differentiable (almost ev-
erywhere) we can perform gradient based optimisation as
usual.

Differentiable Sampling

Consider
𝑦 ∼ 𝒩(𝜇, 𝜎2)

How can we take derivatives of 𝑦 with respect to 𝜇 and 𝜎2?

Differentiable Sampling

If we rewrite

𝑦 = 𝜇 + 𝜎𝑧 where 𝑧 = 𝒩(0, 1)

Then it is clear that 𝑦 is a function of a deterministic operation
with variables 𝜇 and 𝜎 with an (extra) input 𝑧.
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• Crucially the extra input is an r.v. whose distribution is not a
function of any variables whose derivatives we wish to calcu-
late.

• The derivatives 𝑑𝑦/𝑑𝜇 and 𝑑𝑦/𝑑𝜎 tell us how an infinitesimal
change in 𝜇 or 𝜎 would change 𝑦 if we could repeat the sam-
pling operation with the same value of 𝑧

The reparameterisation trick

• The ‘trick’ of factoring out the source of randomness into an
extra input 𝑧 is often called the reparameterisation trick.

• It doesn’t just apply to the Gaussian distribution!

– More generally we can express any probability distribution
𝑝(y; 𝛉) or 𝑝(y|𝐱; 𝛉) as 𝑝(y; 𝛚) where 𝛚 contains the parame-
ters 𝛉 and if applicable inputs 𝐱.

– A sample 𝐲 ∼ 𝑝(y; 𝛚) can be rewritten as 𝐲 = 𝑓 (𝐳,𝛚) where
𝐳 is a source of randomness.

– We can thus compute derivatives 𝜕𝐲/𝜕𝛚 and use gradient
based optimisation as long as
∗ 𝑓 is continuous and differentiable almost everywhere
∗ 𝛚 is not a function of 𝐳
∗ and 𝐳 is not a function of 𝛚

Backpropagation through discrete stochastic operations

• Consider a stochastic model 𝐲 = 𝑓 (𝐳,𝛚) where the outputs are
discrete.

– This implies 𝑓 must be a step function.
– Derivatives of a step function at the step are undefined.
– Derivatives are zero almost everywhere.
– If we have a loss ℒ(𝐲) the gradients don’t give us any infor-

mation on how to update the parameters 𝛉 to minimise the
loss

• Potential solutions:

– REINFORCE
– A relaxation and another ‘trick’: Gumbel Softmax and the

Straight-through operator
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REINFORCE: REward Increment = nonnegative Factor × Offset Rein-
forcement × Characteristic Eligibility

• ℒ(𝑓 (𝐳,𝛚)) has useless derivatives

• But the expected loss 𝔼𝐳∼𝑝(z)ℒ(𝑓 (𝐳,𝛚))is often smooth and
continuous.

– This is not tractable with high dimensional 𝐲.

– But, it can be estimated without bias using an Monte Carlo
average.

• REINFORCE is a family of algorithms that utilise this idea.

REINFORCE: REward Increment = nonnegative Factor × Offset Rein-
forcement × Characteristic Eligibility

The simplest form of REINFORCE is easy to derive by differ-
entiating the expected loss:

𝔼𝐳[ℒ(𝐲)] = ∑
𝐲

ℒ(𝐲)𝑝(𝐲) (9.1)

𝜕𝔼[ℒ(𝐲)]
𝜕𝛚 = ∑

𝐲
ℒ(𝐲)

𝜕𝑝(𝐲)
𝜕𝛚 (9.2)

= ∑
𝐲

ℒ(𝐲)𝑝(𝐲)
𝜕 log𝑝(𝐲)

𝜕𝛚 (9.3)

≈
1
𝑚

𝑚
∑

𝐲(𝑖)∼𝑝(y),𝑖=1
ℒ(𝐲(𝑖))

𝜕 log𝑝(𝐲(𝑖))
𝜕𝛚 (9.4)

• This gives us an unbiased MC estimator of the gradient.

• Unfortunately this is a very high variance estimator, so it would
require many samples of 𝑦 to be drawn to obtain a good esti-
mate

– or equivalently, if only one sample were drawn, SGD would
converge very slowly and require a small learning rate.

Sampling from a categorical distribution: Gumbel Softmax

The generation of a discrete token, 𝑡, from a vocabulary of 𝐾
tokens is achieved by sampling a categorical distribution

𝑡 ∼ Cat(𝑝1,… , 𝑝𝐾) ; ∑
𝑖

𝑝𝑖 = 1.
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Generating the probabilities 𝑝1,… , 𝑝𝐾 directly from a neural net-
work has potential numerical problems; it’s much easier to gener-
ate logits, 𝑥1,… , 𝑥𝐾. [0.5em] The gumbel-softmax reparameteri-
sation allows us to sample directly using the logits:

𝑡 = argmax
𝑖∈{1,⋯,𝐾}

𝑥𝑖 + 𝑧𝑖

where 𝑧1,… 𝑧𝐾 are i.i.d Gumbel(0,1) variates which can be com-
puted from Uniform variates through − log(− log(−𝒰(0, 1))).

Differentiable Sampling: Straight-Through Gumbel Softmax

Ok, but how does that help? argmax isn’t differentiable!
[0.5em] ...but we’ve already seen that we can relax argmax using

softargmax(𝐲) = ∑
𝑖

𝑒𝑦𝑖/𝑇

∑𝑗 𝑒
𝑦𝑗/𝑇 𝑖

where 𝑇 is the temperature parameter.

Differentiable Sampling: Straight-Through Gumbel Softmax

But... this clearly gives us a result that will be non-integer;
we cannot round or clip because it would be non-differentiable.
[0.5em]The Straight-Through operator allows us to take the result
of a true argmax that has the gradient of the softargmax:

STargmax(𝐲) = softargmax(𝐲)+stopgradient(argmax(𝐲)−softargmax(𝐲))

where stopgradient is defined such that stopgradient(𝐚) = 𝐚 and
∇ stopgradient(𝐚) = 0.

Straight-Through Gumbel Softmax
Combine the gumbel softmax trick with the STargmax to give
you discrete samples, with a usable gradient2.

Summary

• Differentiable programming works with functions that are
continuous and differentiable almost everywhere.
2The ST operator is biased but low variance; in practice it works very well

and is better than the high-variance unbiased estimates you could get through
REINFORCE.
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• Some non-continuous functions can be relaxed to make them
more amenable to gradient based optimisation by making con-
tinuous approximations.

• Some continuous functions with discontinuous gradients can
be relaxed to make optimisation more stable.

• Reparameterisations can allow us to differentiate through ran-
dom operations such as sampling

• We can even make networks output/utilise discrete variables
by combining relaxations and reparameterisations.
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Part II

Basic Deep Learning
Architectures
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10. A Biological Perspective
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11. Convolutional Networks
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12. Recurrent Neural
Networks

pause

Recurrent Neural Networks - Motivation

𝑥: Jon and Ethan gave deep learning lectures

𝑦: 1 0 1 0 0 0 0

pause

Recurrent Neural Networks - Motivation

𝑥: 𝑥(1) ... 𝑥(𝑡) ... 𝑥(𝑇𝑥)

𝑥: Jon ... Ethan ... lectures

𝑦: 𝑦(1) ... 𝑦(𝑡) ... 𝑦(𝑇𝑦)

𝑦: 1 ... 1 ... 0

In this example, 𝑇𝑥 = 𝑇𝑦 = 7 but 𝑇𝑥 and 𝑇𝑦 can be different.

Recurrent Neural Networks
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Aside: One Hot Encoding

How can we represent individual words (or other discrete
tokens)?

Why Not a Standard Feed Forward Network?

• For a task such as “Named Entity Recognition” a MLP would
have several disadvantages

– The inputs and outputs may have varying lengths

– The features wouldn’t be shared across different temporal
positions in the network

∗ Note that 1-D convolutions can be (and are) used to ad-
dress this, in addition to RNNs - more on this in a later
lecture

Image from http://karpathy.github.io/2015/05/21/
rnn-effectiveness/

Image from https://ayearofai.com
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• To interpret a sentence, or to predict tomorrows weather it is
necessary to remember what happened in the past

• To facilitate this we would like to add a feedback loop delayed
in time

pause

Recurrent Neural Networks

1

• RNNs are a family of ANNs for processing sequential data

• RNNs have directed cycles in their computational graphs

pause

Recurrent Neural Networks

RNNs combine two properties which make them very power-
ful.

• Distributed hidden state that allows them to store a lot of in-
formation about the past efficiently. This is because several
different units can be active at once, allowing them to remem-
ber several things at once.

• Non-linear dynamics that allows them to update their hidden
state in complicated ways2.
1Image taken from https://towardsdatascience.com
2Often said to be difficult to train, but this is not necessarily true - dropout can

help with overfitting for example
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pause

Recurrent Neural Networks

RNNs are Turing complete in the sense they can simulate
arbitrary programs3.

If training vanilla neural nets is optimisation over functions,
training recurrent nets is optimisation over programs.

Recurrent Network

x1

x2

x3

x
n

In
p
u
t
p
a
tt
er
n
,
x

pause

Training Recurrent Networks

• Given a set of inputs 𝒟 = ((𝐱(𝑡), 𝐲(𝑡))∣𝑡 = 1, 2, … , 𝑇)

x(1)

y(1)

c(0)

W

x(2)

y(2)

c(1)

W

x(3)

y(3)

c(2)

W

x(4)

y(4)

c(3)

W

3Don’t read too much into this - like universal approximation theory, just
because they can doesn’t mean its necessarily learnable!
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• Minimise an error (here MSE, but your choice):

𝐸(𝐖) =
𝑇
∑
𝑡=1

∥𝐲(𝑡) − 𝐟(𝐱(𝑡), 𝐜(𝑡 − 1)|𝐖)∥2

• This is known as back-propagation through time

An RNN is just a recursive function invocation

• 𝐲(𝑡) = 𝐟(𝐱(𝑡), 𝐜(𝑡 − 1)|𝐖)

• and the state 𝐜(𝑡) = 𝐠(𝐱(𝑡), 𝐜(𝑡 − 1)|𝐖)

• If the output 𝐲(𝑡) depends on the input 𝐱(𝑡−2), then prediction
will be

𝐟(𝐱(𝑡), 𝐠(𝐱(𝑡 − 1), 𝐠(𝐱(𝑡 − 2), 𝐠(𝐱(𝑡 − 3)|𝐖)|𝐖)|𝐖)|𝐖)

• it should be clear that the gradients of this with respect to the
weights can be found with the chain rule

What is the state update 𝑔()?

• It depends on the variant of the RNN!

– Elman
– Jordan
– LSTM
– GRU

Elman Networks (“Vanilla RNNs”)

𝐡𝑡 = 𝜎ℎ(𝐖𝑖ℎ𝐱𝑡 + 𝐛𝑖ℎ +𝐖ℎℎ𝐡𝑡−1 + 𝐛ℎℎ)
𝐲𝑡 = 𝜎𝑦(𝐖𝑦𝐡𝑡 + 𝐛𝑦)

• 𝜎ℎ is usually tanh

• 𝜎𝑦 is usually identity (linear) – the 𝑦’s could be regressed val-
ues or logits

• the state 𝐡𝑡 is referred to as the “hidden state”

• the output at time 𝑡 is a projection of the hidden state at that
time

• the hidden state at time 𝑡 is a summation of a projection of the
input and a projection of the previous hidden state
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Going deep: Stacking RNNs

• RNNs can be trivially stacked into deeper networks

• It’s just function composition: [1em] 𝐲(𝑡) = 𝐟2(𝐟1(𝐱(𝑡), 𝐜2(𝑡 −
1)|𝐖1), 𝐜2(𝑡 − 1)|𝐖2) [1em]

• The output of the inner RNN at time 𝑡 is fed into the input of
the outer RNN which produces the prediction 𝑦

• Also note: RNNs are most often not used in isolation - it’s quite
common to process the inputs and outputs withMLPs (or even
convolutions)

Example: Character-level language modelling

• We’ll end with an example: an RNN that learns to ‘generate’
English text by learning to predict the next character in a se-
quence

• This is “Character-level Language Modelling”

Example: Character-level language modelling

Image from http://karpathy.github.io/2015/05/21/
rnn-effectiveness/
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Training a Char-RNN

• The training data is just text data (e.g. sequences of characters)

• The task is unsupervised (or rather self-supervised): given
the previous characters predict the next one

– All you need to do is train on a reasonable sized corpus of
text

– Overfitting could be a problem: dropout is very useful here

Sampling the Language Model

• Once the model is trained what can you do with it?

• if you feed it an initial character it will output the logits of the
next character

• you can use the logits to select the next character and feed that
in as the input character for the next timestep

• how do you ‘sample’ a character from the logits?

– you could pick the most likely (maximum-likelihood solu-
tion), but this might lead to generated text with very low
variance (it might be boring and repetitive)

– you could treat the softmax probabilities defined by the
logits as a categorical distribution and sample from them
∗ you might increase the ‘temperature’, 𝑇, of the softmax to

make the distribution more diverse (less ‘peaky’): 𝑞𝑖 =
exp (𝑧𝑖/𝑇)

∑𝑗 exp (𝑧𝑗/𝑇)

A lot of the ideas in this lectu on the input c(t − 1), g
(x i (x(t − 2), g (t − 1)|W ) Iged snllhomitpon” ares
Mnt Net) th
plOnaafed a tre the sidisicters of to prediction couponet
on the logits its venvows usts sevouvd be this in as
useuled at on in the pan Lerate’atectsrray to paet in-
puts D = Pxxpraition the rople, the next
vog the state atite

- Sampled from a single layer RNN4.
4LSTM, 128 dim hidden size, with linear input projection to 8-dimensions and

output to the number of characters (84). Trained on the text of these slides for 50
epochs.
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Recap: An RNN is just a recursive function invocation

• 𝐲(𝑡) = 𝐟(𝐱(𝑡), 𝐜(𝑡)|𝐖)

• and the state 𝐜(𝑡) = 𝐠(𝐱(𝑡), 𝐜(𝑡 − 1)|𝐖)

• If the output 𝐲(𝑡) depends on the input 𝐱(𝑡−2), then prediction
will be

𝐟(𝐱(𝑡), 𝐠(𝐱(𝑡), 𝐠(𝐱(𝑡 − 1), 𝐠(𝐱(𝑡 − 2), 𝑐(𝑡 − 2)|𝐖)|𝐖)|𝐖)|𝐖)

• it should be clear that the gradients of this with respect to the
weights can be found with the chain rule

• The back-propagated error will involve applying 𝐟 multiple
times

• Each time the error will get multiplied by some factor 𝑎

• If 𝐲(𝑡) depends on the input 𝐱(𝑡−𝜏) then the back-propagated
signal will be proportional to 𝑎𝜏−1

• This either vanishes or explodes when 𝜏 becomes large

Vanishing and Exploding Gradients

x(t)

y(t) = w1

(

x(t) + w2 y(t− 1)
)

w1

w2

0 1 2 3 4 5 6 7 8 9

w1 = w2 = 1.1

x(t)

y(t)

LSTM Architecture

• LSTMs (long-short term memory) was designed to solve this
problem

• Key ideas: to retain a ‘long-term memory’ requires

𝐜(𝑡) = 𝐜(𝑡 − 1)

• Sometimes we have to forget and sometimes we have to change
a memory

• To do this we should use ‘gates’ that saturate at 0 and 1

• Sigmoid functions naturally saturate at 0 and 1
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LSTM Architecture
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Update Equations

Initially, for 𝑡 = 0, 𝐡(0) = 𝟎

• Inputs 𝐳(𝑡) = (𝐱(𝑡), 𝐡(𝑡 − 1))

• Network updates (𝐖∗ and 𝐛∗ are the learnable parameters)

𝐟(𝑡) = 𝛔(𝐖𝑓 𝐳(𝑡) + 𝐛𝑓) 𝐢(𝑡) = 𝛔(𝐖𝑖 𝐳(𝑡) + 𝐛𝑖)

𝐠(𝑡) = tanh(𝐖𝑔 𝐳(𝑡) + 𝐛𝑔) 𝐨(𝑡) = 𝛔(𝐖𝑜 𝐳(𝑡) + 𝐛𝑜)

• Long-term memory update

𝐜(𝑡) = 𝐟(𝑡) ⊙ 𝐜(𝑡 − 1) + 𝐠(𝑡) ⊙ 𝐢(𝑡)

• Output 𝐡(𝑡) = 𝐨(𝑡) ⊙ tanh(𝐜(𝑡))

Training LSTMs

• We can train an LSTM by unwrapping it in time.

• Note that it involves four dense layers with sigmoidal (or tanh)
outputs.

• This means that typically it is very slow to train.

• There are a few variants of LSTMs, but all are very similar. The
most popular is probably the Gated Recurrent Unit (GRU).
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LSTM Success Stories

• LSTMs have been used to win many competitions in speech
and handwriting recognition.

• Major technology companies including Google, Apple, and
Microsoft are using LSTMs as fundamental components in
products.

• Google used LSTM for speech recognition on the smartphone,
for Google Translate.

• Apple uses LSTM for the ”Quicktype” function on the iPhone
and for Siri.

• Amazon uses LSTM for Amazon Alexa.

• In 2017, Facebook performed some 4.5 billion automatic trans-
lations every day using long short-term memory networks5.

pause

Gated Recurrent Unit (GRU)

GRU

h(t− 1)
{ }
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5https://en.wikipedia.org/wiki/Long_short-term_memory
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Gated Recurrent Unit (GRU)

• 𝐱(𝑡): input vector

• 𝐡(𝑡): output vector (and ‘hidden state’)

• 𝐫(𝑡): reset gate vector

• 𝐳(𝑡): update gate vector

• 𝐧(𝑡): new state vector (before update is applied)

• 𝐖 and 𝐛: parameter matrices and biases

pause

Gated Recurrent Unit (GRU)

Initially, for 𝑡 = 0, 𝐡(0) = 𝟎

𝐳(𝑡) = 𝜎(𝐖𝑧(𝐱(𝑡), 𝐡(𝑡 − 1)) + 𝐛𝑧)
𝐫(𝑡) = 𝜎(𝐖𝑟(𝐱(𝑡), 𝐡(𝑡 − 1)) + 𝐛𝑟)
𝐧(𝑡) = tanh(𝐖𝑛(𝐱(𝑡), 𝑟(𝑡) ⊙ ℎ(𝑡 − 1)) + 𝐛ℎ)
𝐡(𝑡) = (1 − 𝐳(𝑡)) ⊙ 𝐡(𝑡 − 1) + 𝐳(𝑡) ⊙ 𝐧(𝑡)

pause

GRU or LSTM?

• GRUs have two gates (reset and update) whereas LSTM has
three gates (input/output/forget)

• GRU performance on par with LSTM but computationally
more efficient (less operations & weights).

Most implementations follow the original paper and swap (1 − 𝐳(𝑡)) and
(𝐳(𝑡)) in the 𝐡(𝑡) update; this doesn’t change the operation of the network, but
does change the interpretation of the update gate, as the gate would have to
produce a 0 when an update was to occur, and a 1 when no update is to happen
(which is somewhat counter-intuitive)!
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• In general, if you have a very large dataset then LSTMs will
likely perform slightly better.

• GRUs are a good choice for smaller datasets.
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13. Auto-encoders

Low Dimensional Representations

• One of the common features of many of the deep learning
models we have looked at to this point is that they often try to
reduce the dimensionality of the input data in order to capture
some kind of underlying information.

• In the last lecture this was particularly evident when when we
looked at embedding models like word2vec which explictly
try to capture relationships in the data in a low dimensional
‘latent’ space.

Self-supervised Learning

Self-supervised Learning

• The word2vec models are examples of self-supervised learning

– CBOW learns to predict the focus word from the context
words

– Skip-gram learns to predict the context words from the focus
word
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• Let’s now consider a different type self-supervised of task
where we want to learn a model that learns to copy its input to
its output.

Autoencoders

• An autoencoder is a network that is trained to copy its input
to its output

– Internally there is some hidden vector 𝐡 that describes a
code that represents the input.

– Conceptually the autoencoder consists of two parts:

∗ The encoder 𝐡 = 𝑓 (𝐱)
∗ The decoder 𝐫 = 𝑔(𝐡)

– and has loss that tries to minimise the reconstruction error
(typically SSE/MSE: ‖𝐱 − 𝐫‖2

2)

(Goodfellow 2016)

Structure of an Autoencoder

CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.

xx rr

hh

f g

Figure 14.1: The general structure of an autoencoder, mapping an input x to an output
(called reconstruction) r through an internal representation or code h. The autoencoder
has two components: the encoder f (mapping x to h) and the decoder g (mapping h to
r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the
training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (14.1)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-

503

Figure 14.1

Input

Hidden layer (code)

Reconstruction

z

Autoencoder constraints

• Clearly a linear autoencoderwith a sufficient number ofweights
(e.g. if the dimension of 𝐡 was greater than or equal to that of
𝑥) could learn set 𝑔(𝑓 (𝐱)) = 𝐱 everywhere, but this obviously
wouldn’t be useful!

• In practice we apply restrictions1 to stop this happening.

• The objective is to use these restrictions to force the autoencoder
to learn useful properties of the data.

1these are ‘inductive biases’
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Undercomplete Autoencoders

• Undercomplete autoencoders have dim(𝐡) << dim(𝐱).

• This forces the encoder to learn a compressed representation of
the input.

• The representation will capture the most salient features of the
input data.

pause

Undercomplete Autoencoders — Linear

Consider the single-hidden layer linear autoencoder network
given by:

ℎ = W𝑒𝐱 + 𝐛𝑒

𝑟 = W𝑑𝐡 + 𝐛𝑑

where 𝐱 ∈ ℝ𝑛, 𝐡 ∈ ℝ𝑚 and 𝑚 < 𝑛.[1em] With the MSE loss,
this autoencoder will learn to span the same subspace as PCA
for a given set of training data. [1em] Note that the autoencoder
weights are not however constrained to be orthogonal (like they
would be in PCA)

Undercomplete Autoencoders — deeper and nonlinear

• A linear autoencoder with a single hidden layer learns to map
into the same subspace as PCA.

• Clearly, a deeper, linear autoencoder would also do the same
thing.

• What happens if you introduce non-linearity?

– Interestingly, a single hidden layer network with non-linear
activations on the encoder (keeping the decoder linear) and
MSE loss also just learns to span the PCA subspace2!

2Bourlard, H., Kamp, Y. Auto-association by multilayer perceptrons and
singular value decomposition. Biol. Cybern. 59, 291–294 (1988). https://-
doi.org/10.1007/BF00332918
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– But, if you add more hidden layers with non-linear acti-
vations (to either the encoder, decoder or both) you can
effectively perform a powerful non-linear generalisation of
PCA

Deep Autoencoders

Deep Autoencoders - caveat

• There is a slight catch: if you give the deep autoencoder net-
work too much capacity (too many weights) it will learn to
perform the copying task without extracting anything useful
about the data.

• Of course this means that will likely not generalise to unseen
data.

• Extreme example:

– Consider a powerful encoder that maps 𝐱 to 𝐡 ∈ ℝ1

– Each training example 𝐱(𝑖) could e.g. be mapped to 𝑖.
– The decoder just needs to memorise the training examples

so that it can map back from 𝑖.
Image taken from wikipedia
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Undercomplete Autoencoders — Convolutional

• Thus far, we only considered autoencoders with vector input-
s/outputs and fully-connected layers.

• There is nothing stopping us using any other kinds of layers
though...

• If we’re working with image data, where we know that much
of the structure is ‘local’, then using convolutions in both the
decoder makes sense

Convolutional Autoencoder

Regularised Autoencoders

• Rather than (necessarily) forcing the hidden vector to have a
lower dimensionality than the input, we could instead utilise
some form of regularisation to force the network to learn inter-
esting representations...

• Many ways to do this; let’s look at two of them:

– Denoising Autoencoders

– Sparse Autoencoders

Denoising Autoencoders

• Denoising autoencoders take a partially corrupted input and
train to recover the original undistorted input.

• To train an autoencoder to denoise data, it is necessary to per-
form a preliminary stochastic mapping to corrupt the data
(𝑥 → ̃𝑥).

– E.g. by adding Gaussian noise.

• The loss is computed between the reconstruction (computed
from the noisy input) against the original noise-free data.
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Sparse Autoencoders

• In a sparse autoencoder, there can be more hidden units than
inputs, but only a small number of the hidden units are allowed
to be active at the same time.

• This is simply achieved with a regularised loss function: ℓ =
ℓ𝑚𝑠𝑒 +𝛺(𝐡)

• A popular choice that you’ve seen before would be to use an l1
penalty 𝛺(𝐡) = 𝜆∑𝑖 |ℎ𝑖|

– this of course does have a slight problem... what is the deriva-
tive of 𝑦 = |𝑥| with respect to 𝑥 at 𝑥 = 0?

Autoencoder Applications

• Any basic AE (or its variant) can be used to learn a compact
representation of data.

– You can learn useful features from data without the need
for labelled data.

– Denoising can help generalise over the test set since the data
is distorted by adding noise.

• Pretraining networks

• Anomoly Detection

• Machine translation

• Semantic segmentation

Beyond Deterministic Autoencoders: Stochastic Encoders and Decoders

• Whenwe trained supervised classification networkswe usually
assume that the network produces an output distribution 𝑝(𝐲|𝐱)
and try to minimise the negative log-likelihood − log(𝑝(𝐲|𝐱)).

• In a decoder of an autoencoder we could do the same thing and
have the decoder learn 𝑝𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝐱|𝐡) byminimising− log(𝑝(𝐱|𝐡).

– A linear output layer could parameterise the mean of a Gaus-
sian distribution for real-valued 𝐱; in this case the negative
log likelihood yields the MSE criterion.
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– Binary 𝐱 would correspond to a Bernoulli distribution pa-
rameterised by sigmoid outputs

– Discrete (or categorical) 𝐱 would correspond to a softmax
distribution.

• What about the encoder - could we make that output 𝑝(𝐡|𝐱)?
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14. Generative models

Introduction

• What is generative modelling and why do we do it?

• Differentiable Generator Networks

• Variational Autoencoders

• Generative Adversarial Networks

14.1. Generative Modelling and
Differentiable Generator Networks

Recap: Generative Models

• Learn models of the data: 𝑝(x)

• Learn conditional models of the data: 𝑝(x|y = 𝑦)

• Some generative models allow the probability distributions to
be evaluated explicitly

– i.e. compute the probability of a piece of data 𝑥: 𝑝(x = 𝑥)

• Some generative models allow the probability distributions to
be sampled

– i.e. draw a sample 𝑥 based on the distribution: 𝑥 ∼ 𝑝(x)

• Some generative models can do both of the above

– e.g. a Gaussian Mixture Model is an explicit model of the
data using 𝑘 Gaussians
∗ The likelihood of data 𝑥 is the weighted sum of the likeli-

hood from each of the 𝑘 Gaussians
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∗ Sampling can be achieved by sampling the categorical
distribution of 𝑘weights followed by sampling a data point
from the corresponding Gaussian

Why do generative modelling?

• Try to understand the processes through which the data was
itself generated

– Probabilistic latent variable models like VAEs or topic mod-
els (PLSA, LDA, …) for text

– Models that try to disentangle latent factors like 𝛽-VAE

• Understand how likely a new or previously unseen piece of
data is

– outlier prediction, anomaly detection, …

• Make ‘new’ data

– Make ‘fake’ data to use to train large supervised models?

– ‘Imagine’ new, but plausible, things?

Differentiable Generator Networks

• Generative Modelling is not new; we’ve known how to make
arbitrarily complex probabilistic graphical models for many
years.

– ...But difficult to train and scale to real data, relying on
MCMC.

• The past few years has seen major progress along four loose
strands:

– Invertible density estimation - A way to specify complex gen-
erative models by transforming a simple latent distribution
with a series of invertible functions.

– Autoregressive models - Another way to model 𝑝(𝑥) is to
break the model into a series of conditional distributions:
𝑝(𝑥) = 𝑝(𝑥1)𝑝(𝑥2|𝑥1)𝑝(𝑥3|𝑥2, 𝑥1)…

– Variational autoencoders - Latent-variable models that use a
neural network to do approximate inference.
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– Generative adversarial networks - A way to train generative
models by optimizing them to fool a classifier

• Common thread in recent advances is that the loss functions
are end-to-end differentiable.

Differentiable Generator Networks: key idea

• We’re interested in models that transform samples of latent
variables 𝐳 to

– samples 𝑥, or,
– distributions over samples 𝑥

• The model is a (differentiable) function 𝑔(𝐳, 𝛉)

– typically 𝑔 is a neural network.

Example: drawing samples from 𝒩(𝛍, 𝚺)

• Consider a simple generator network with a single affine layer
that maps samples 𝒩(𝟎, 𝐈) to 𝒩(𝛍, 𝚺): [1em]
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𝐳 ∼ 𝒩(𝟎, 𝐈) 𝑔𝛉(𝐳) 𝐱 ∼ 𝒩(𝛍, 𝚺)

• Note: Exact solution is 𝐱 = 𝑔𝛉(𝐳) = 𝛍 + 𝐋𝐳 where 𝐋 is the
Cholesky decomposition of 𝚺: 𝚺 = 𝐋𝐋⊤, lower triangular 𝐋.

Generating samples

More generally, we can think of 𝑔 as providing a nonlinear
change of variables that transforms a distribution over z into the
desired distribution over x:i

i
“genfigures/output_12” — 2023/1/28 — 11:32 — page 121 — #1 i
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𝑝𝑧(𝐳) 𝑔(𝐳) 𝑝𝑥(𝐱)

For any invertible, differentiable, continuous 𝑔:

𝑝𝑧(𝐳) = 𝑝𝑥(𝑔(𝐳)) ∣det(
𝜕𝑔
𝜕𝐳)∣

Which implicitly imposes a probability distribution over x:
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𝑝𝑥(𝐱) =
𝑝𝑧(𝑔−1(𝐱))

∣det(𝜕𝑔
𝜕𝐳)∣

Note: usually use an indirect means of learning 𝑔 rather than
minimise − log(𝑝(𝐱)) directly

Generating distributions

• Rather than use 𝑔 to provide a sample of 𝐱 directly, we could
instead use 𝑔 to define a conditional distribution over 𝑥, 𝑝(𝐱|𝐳)

– For example, 𝑔 might produce the parameters of a particular
distribution - e.g.:

∗ means of Bernoulli
∗ mean and variance of a Gaussian

• The distribution over 𝐱 is imposed by marginalising 𝐳:𝑝(𝐱) =
𝔼𝐳𝑝(𝐱|𝐳)

Distributions vs Samples

• In both cases (𝑔 generates samples and 𝑔 generates distribu-
tions) we can use the reparameterisation tricks we saw last
lecture to train models.

• Generating distributions:

– + works for both continuous and discrete data

– - need to specify the form of the output distribution

• Generating samples:

– + works for continuous data

∗ +discrete data is recently possible -we need the STargmax

– + don’t need to specify the distribution in explicit form

Complexity of Generative Modelling

• In classification both input and output are given

– Optimisation only needs to learn the mapping

134



i
i

“output” — 2023/1/28 — 11:33 — page 135 — #154 i
i

i
i

i
i

• Generative modelling is more complex than classification be-
cause

– learning requires optimizing intractable criteria

– data does not specify both input 𝐳 and output 𝐱 of the gener-
ator network

– learning procedure needs to determine how to arrange 𝐳
space in a useful way and how to map 𝐳 to 𝐱

14.2. Variational Autoencoders

Variational Autoencoders (VAEs)

The Variational Autoencoder uses the following generative
process to draw samples:

i
i
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i
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i

i
i

𝐳 ∼ 𝑝model(𝐳) 𝑝model(𝐱|𝐳; 𝛉) = 𝑝model(𝐱; 𝑔𝛉(𝐳)) 𝐱 ∼ 𝑝model(𝐱|𝐳; 𝛉)

• The learning problem is to find 𝛉 thatmaximises the probability
of each 𝐱 in the training set under 𝑝(𝐱) = ∫𝑝(𝐱|𝐳; 𝛉)𝑝(𝐳)𝑑𝐳

• 𝑝model(𝐳) is most often chosen to be 𝒩(𝟎, 𝐈)

• 𝑝model(𝐱|𝐳) is chosen according to the data; typically Gaussian
for real-valued data (most often just predicting the means,
with a fixed diagonal covariance) or Bernoulli for binary data.

– Intuition: we don’t exactly want to exactly create the training
examples; we want to create things like the training examples

Variational Autoencoders (VAEs)

• Conceptually we can compute 𝑝(𝐱) ≈ 1
𝑛 ∑𝑛

𝑖 𝑝(𝐱|𝐳𝑖; 𝛉) for 𝑛
samples of 𝐳, {𝐳1,… , 𝐳𝑛} and just use gradient ascent to do the
optimisation

– This isn’t tractable in practice; 𝑛 would need to be extremely
big!

• For most 𝐳, 𝑝(𝐱|𝐳) will be nearly zero, and hence contribute
almost nothing to our estimate of 𝑝(𝐱)
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• The key idea behind the VAE is to learn to sample values of 𝐳
that are likely to have produced 𝐱, and compute 𝑝(𝐱) just from
those

– Introduce a new function 𝑞𝛟(𝐳|𝐱) which can take a value of
𝐱 and produce the distribution over 𝐳 values that are likely
to produce 𝐱.

– The space of 𝐳 values that are likely under 𝑞 should be much
smaller than the space of than under prior 𝑝(𝐳).

– We can now compute 𝔼𝐳∼𝑞𝛟
𝑝(𝐱|𝐳; 𝛉) easily

∗ if the PDF 𝑞(𝐳), is not 𝒩(𝟎, 𝐈), then how does that help us
optimize 𝑝(𝐱)?

∗ and how does this expectation relate to 𝑝(𝐱)?

Variational Inference

Log-probability log 𝑝(𝑥) = log∫𝑝(𝑥|𝑧)𝑝(𝑧)𝑑𝑧

Proposal log 𝑝(𝑥) = log∫𝑝(𝑥|𝑧)𝑝(𝑧)
𝑞(𝑧|𝑥)
𝑞(𝑧|𝑥)𝑑𝑧

Importance weight log 𝑝(𝑥) = log∫𝑝(𝑥|𝑧)
𝑝(𝑧)
𝑞(𝑧|𝑥)𝑞(𝑧|𝑥)𝑑𝑧

Jensen’s inequality log 𝑝(𝑥) ≥ ∫𝑞(𝑧|𝑥) log(𝑝(𝑥|𝑧)
𝑝(𝑧)
𝑞(𝑧|𝑥)) 𝑑𝑧

Rearrange log 𝑝(𝑥) ≥ ∫𝑞(𝑧|𝑥) log 𝑝(𝑥|𝑧)𝑑𝑧 − ∫𝑞(𝑧|𝑥) log
𝑞(𝑧|𝑥)
𝑝(𝑧) 𝑑𝑧

ELBO log 𝑝(𝑥) ≥ 𝔼𝑧∼𝑞(𝑧|𝑥) log 𝑝(𝑥|𝑧) − 𝐷KL(𝑞(𝑧|𝑥)||𝑝(𝑧))

Jensen’s inequality: log∫𝑝(𝑥)𝑔(𝑥)𝑑𝑥 ≥ ∫𝑝(𝑥) log𝑔(𝑥)𝑑𝑥 Log product rule: log(𝑎 ⋅ 𝑏) =

log 𝑎 + log 𝑏 Log quotient rule: log(𝑎/𝑏) = log 𝑎 − log 𝑏

The Evidence LOwer Bound (ELBO) / variational lower bound

The ELBO expression we just derived is a cornerstone of vari-
ational inference:

ℒ(𝑞) = 𝔼𝐳∼𝑞(𝐳|𝐱) log 𝑝model(𝐱|𝐳) − 𝐷KL(𝑞(𝐳|𝐱)||𝑝model(𝐳))

≤ log 𝑝model(𝐱)

• The expectation term looks just like a reconstruction log-likelihood
found in normal autoencoders

136



i
i

“output” — 2023/1/28 — 11:33 — page 137 — #156 i
i

i
i

i
i

– If 𝑝model(𝐱|𝐳) is Gaussian, then this is MSE between the true
training 𝐱 and a generated sample computed from 𝐳, aver-
aged across many 𝐳’s (each a function of 𝐱)

• The KL term is forcing the approximate posterior 𝑞(𝐳|𝐱) to-
wards the prior 𝑝model(𝐳).

Why is it called an autoencoder?

• 𝑞(𝐳|𝐱) is referred to as an encoder; it’s used to take 𝐱 and turn
it into a 𝐳

• 𝑝model(𝐱; 𝑔𝛉(𝐳)) is referred to as a decoder network; it takes a 𝐳
and decodes it into a target 𝐱

• From a practical standpoint, a VAE is a normal autoencoder
with two key differences:

– the encoder generates a distribution that must be sampled

∗ the network produces the sufficient statistics of the distri-
bution (e.g. means and diagonal co-variances for a typical
VAE with Gaussian 𝑞(𝐳|𝐱))

– the decoder generates a distribution, which, during training
the NLL of the true data 𝐱 is compared against

VAE: Diagram

Encoder 
(   ) 

Decoder 
(   ) 

Sample    from 

Encoder 
(   ) 

Decoder 
(   ) 

Sample    from 

* 

+ 

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

want to optimize is:

EX⇠D [log P(X)�D [Q(z|X)kP(z|X)]] =
EX⇠D [Ez⇠Q [log P(X|z)]�D [Q(z|X)kP(z)]] .

(8)
If we take the gradient of this equation, the gradient symbol can be moved
into the expectations. Therefore, we can sample a single value of X and a
single value of z from the distribution Q(z|X), and compute the gradient of:

log P(X|z)�D [Q(z|X)kP(z)] . (9)

We can then average the gradient of this function over arbitrarily many
samples of X and z, and the result converges to the gradient of Equation 8.

There is, however, a significant problem with Equation 9. Ez⇠Q [log P(X|z)]
depends not just on the parameters of P, but also on the parameters of Q.
However, in Equation 9, this dependency has disappeared! In order to make
VAEs work, it’s essential to drive Q to produce codes for X that P can reliably
decode. To see the problem a different way, the network described in Equa-
tion 9 is much like the network shown in Figure 4 (left). The forward pass of
this network works fine and, if the output is averaged over many samples
of X and z, produces the correct expected value. However, we need to

10

From Carl Doersch’s Tutorial on VAEs - https://arxiv.org/pdf/1606.05908.pdf
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VAE Models and Performance

• VAEs can be used with any kind of data

– the distributions and network architecture just needs to be
set accordingly

– e.g. it’s common to use convolutions in the encoder and
transpose convolutions in (Gaussian) decoder for image
data

• VAEs have nice learning dynamics; they tend to be easy to
optimise with stable convergence

• VAEs have a reputation for producing blurry reconstructions
of images

– Not fully understood why, but most likely related to a side
effect of maximum-likelihood training

• VAEs tend to only utilise a small subset of the dimensions of 𝐳

– Pro: automatic latent variable selection

– Con: better reconstructions should be possible given the
available code-space

Reconstructions Example
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Sampling Example

14.3. Generative Adversarial Networks

Generative Adversarial Networks (GANs)

• New (old?!1) method of training deep generative models

• Idea: pitch a generator and a discriminator against each other

– Generator tries to draw samples from 𝑝(x)
– Discriminator tries to tell if sample came from the generator

(fake) or the real world

• Both discriminator and generator are deep networks (differen-
tiable functions)

• LeCun quote ‘GANs, the most interesting idea in the last ten
years in machine learning’

Aside: Adversarial Learning vs. Adversarial Examples

The approach of GANs is called adversarial since the two
networks have antagonistic objectives.

This is not to be confused with adversarial examples in machine
learning.

1c.f. Schmidhuber
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Generative adversarial networks (conceptual)

Generator

Real world 
images

Discriminator

Real

Lo
ss

La
te

nt
 r

an
d

o
m

 v
ar

ia
b

le

Sample

Sample

Fake

5

See these two papers for more details: https://arxiv.
org/pdf/1412.6572.pdf https://arxiv.org/pdf/1312.
6199.pdf

pause

More Formally

• The generator
𝐱 = 𝑔(𝐳)

is trained so that it gets a random input 𝐳 ∈ ℝ𝑛 from a dis-
tribution (typically 𝒩(𝟎, 𝐈) or 𝒰(𝟎, 𝐈)) and produces a sample
𝐱 ∈ ℝ𝑑 following the data distribution as output (ideally).
Usually 𝑛 << 𝑑.

• The discriminator
𝑦 = 𝑑(𝐱)

gets a sample 𝐱 as input and predicts a probability 𝑦 ∈ [0, 1]
(or real-valued logit of a Bernoulli distribution) determining
if it is real or fake.

More Practically

• Training a standard GAN is difficult and often results in two
undesirable behaviours
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– Oscillations without convergence. No guarantee that the
loss will actually decrease...

∗ It has been shown that a GAN has saddle-point solution,
rather than a local minima.

– The mode collapse problem, when the generator models
very well a small sub-population, concentrating on a few
modes.

• Additionally, performance is hard to assess and often boils
down to heuristic observations.

Deep Convolutional Generative Adversarial Networks (DCGANs)

• Motivates the use of GANS to learn reusable feature represen-
tations from large unlabelled datasets.

• GANs known to be unstable to train, often resulting in genera-
tors that produce “nonsensical outputs”.

• Model exploration to identify architectures that result in stable
training across datasets with higher resolution and deeper
models.

Architecture Guidelines for Stable DCGAN
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• Replace pooling layers with strided convolutions in the dis-
criminator and fractional-strided (transpose) convolutions in
the generator.

– This will allow the network to learn its own spatial down-
sampling.

• Use batchnorm in both the generator and the discriminator.

– This helps deal with training problems due to poor initiali-
sation and helps the gradient flow.

• Eliminate fully connected hidden layers for deeper architec-
tures.

• Use ReLU activation in the generator for all layers except for
the output, which uses tanh.

• Use LeakyReLU activation in the discriminator for all layers.

Summary

• Generative modelling is a massive field with a long history

• Differentiable generators have had a profound impact in mak-
ing models that work with real data at scale

• VAEs and GANs are currently the most popular approaches to
training generators for spatial data

• We’ve only scratched the surface of generative modelling

– Auto-regressive approaches are popular for sequences (e.g.
language modelling).
∗ But also for images (e.g. PixelRNN, PixelCNN)

– typically RNN-based
– but not necessarily - e.g. WaveNet is a convolutional auto-

regressive generative model
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15. Attention
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Part III

Structure, Innate Priors
and Inductive Biases



i
i

“output” — 2023/1/28 — 11:33 — page 146 — #165 i
i

i
i

i
i



i
i

“output” — 2023/1/28 — 11:33 — page 147 — #166 i
i

i
i

i
i

16. Learning Representations
of Sets



i
i

“output” — 2023/1/28 — 11:33 — page 148 — #167 i
i

i
i

i
i

148



i
i

“output” — 2023/1/28 — 11:33 — page 149 — #168 i
i

i
i

i
i

17. Differentiable relaxations
of drawing
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18. Learning to communicate
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19. Learning with graphs and
geometric data
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20. Self-supervised and
multi-objective learning
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21. Neural arithmetic and
logic units
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22. Searching for
architectures
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Solutions

Answer of exercise 1.1i
i
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geometric proof + squeezing

Answer of exercise 1.2i
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...

Answer of exercise 1.3

Linear mappings satisfy 𝑓 (𝒂+𝒃) = 𝑓 (𝒂)+𝑓 (𝒃) and 𝑓 (𝑐𝒂) = 𝑐𝑓 (𝒂).
Letting 𝒂, 𝒃 ∈ 𝔸, then,

(𝑔 ∘ 𝑓 )(𝒂 + 𝒃) = 𝑔(𝑓 (𝒂) + 𝑓 (𝒃))
= 𝑔(𝑓 (𝒂)) + 𝑔(𝑓 (𝒃))
= (𝑔 ∘ 𝑓 )(𝒂) + (𝑔 ∘ 𝑓 )(𝒃)

and,

(𝑔 ∘ 𝑓 )(𝑐𝒂) = 𝑔(𝑓 (𝑐𝒂))
= 𝑔(𝑐𝑓 (𝒂))
= 𝑐𝑔(𝑓 (𝒂))
= 𝑐(𝑔 ∘ 𝑓 )(𝒂)

Thus 𝑔 ∘ 𝑓 must also be a linear mapping.
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