Image Classification Networks: classical architectures and common design patterns

Jonathon Hare

Vision, Learning and Control University of Southampton

Motivation: Image Classification

RELU RELU	POOL J RELU I	POOL RELU RELU	POOL RELU
CONV CONV			
			car truck airplane ship horse

Image Classification Competitions

- Corel Dataset, early 2000's
 - Annotation/multi-label classification
 - ~4500/500 small images
- PASCAL VOC Challenges ~2007
 - Object detection and classification

The ImageNet Challenge

- Circa 2009/2010
- ILSVRC Challenge Dataset: 1.3 Million Images in 1000 classes from a larger superset

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–1000.

The All CNN

Striving for Simplicity: The All Convolutional Net. https:// arxiv.org/pdf/1412.6806.pdf

٨	R	C
1	$\frac{D}{100000000000000000000000000000000000$	C
X 5 conv 06 Pel U	11 mput 52×52 KOB Image	2×2 conv. 06 Pal II
0×0 conv. 90 KeLU	1×1 conv. 96 ReLU	3×3 conv. 96 ReI U
	3×3 max-pooling stride 2	3×3 conv. 30 KeLO
5×5 conv. 102 ReI II	5×5 conv. 192 ReI II	3×3 conv. 102 ReI II
7×5 conv. 152 KeLO	1×1 conv. 192 ReLU	3×3 conv. 192 ReLU
	3×3 max-pooling stride 2	
	$\frac{3 \times 3 \text{ conv}}{3 \times 3 \text{ conv}}$ 192 ReLU	
	1×1 conv. 192 ReLU	
	$1 \times 1 \text{ conv. } 10 \text{ ReLU}$	
global ave	eraging over 6×6 spatial d	imensions
	10 or 100-way softmax	
	To of Too way solutian	

The VGG Networks

Very Deep Convolutional Networks for Large-Scale Image Recognition. <u>https://arxiv.org/pdf/1409.1556.pdf</u>

Γ			ConvNet Co	onfiguration			
Γ	А	A-LRN	В	C	D	E	
	11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
L	layers	layers	layers	layers	layers	layers	
Γ	input (224×224 RGB image)						
Γ	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
L		LRN	conv3-64	conv3-64	conv3-64	conv3-64	
	maxpool						
Γ	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
			conv3-128	conv3-128	conv3-128	conv3-128	
Γ			max	pool			
Г	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
				conv1-256	conv3-256	conv3-256	
						conv3-256	
Γ	maxpool						
Γ	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
				conv1-512	conv3-512	conv3-512	
						conv3-512	
Γ			max	pool			
Γ	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
				conv1-512	conv3-512	conv3-512	
						conv3-512	
			max	pool			
			FC-4	4096			
			FC-4	4096			
	FC-1000						
	soft-max						

GoogLeNet and the Inception Module

Going Deeper with Convolutions. https://arxiv.org/pdf/ 1409.4842

58.9M params

Deep Residual Networks / ResNet

Deep Residual Learning for Image Recognition. <u>https://</u> arxiv.org/pdf/1512.03385.pdf

Do deeper ResNets get you better performance?

me	error (%)		
Maxo	9.38		
NI	8.81		
DSI	DSN [24]		
	# layers	# params	
FitNet [35]	19	2.5M	8.39
Highway [42, 43]	19	2.3M	7.54 (7.72±0.16)
Highway [42, 43]	32	1.25M	8.80
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

Table 6. Classification error on the **CIFAR-10** test set. All methods are with data augmentation. For ResNet-110, we run it 5 times and show "best (mean \pm std)" as in [43].

Networks

Overfitting is a serious concern

- Early nets used dropout extensively
 - BatchNorm has replaced this in more recent architectures
- Significant amounts of data augmentation (the original AlexNet had 2048 augmentations for each training image!)

Competing in ImageNet

- Almost all the winners use a form of test-time augmentation
 - Take multiple views of the input image (e.g. AlexNet took 10 augmentations) and average over the classifications.